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Abstract 

Image processing offers a potential to simplify an optical system by shifting some of 
the imaging burden from lenses to the more cost effective electronics. Wavefront 
coding using a cubic phase plate combined with image processing can extend the 
system’s depth of focus, reducing many of the focus-related aberrations as well as 
material related chromatic aberrations. However, the optimal design process and 
physical limitations of wavefront coding systems with respect to first-order optical 
parameters and noise are not well documented. We examined image quality of 
simulated and experimental wavefront coded images before and after reconstruction 
in the presence of noise. Challenges in the implementation of cubic phase in an 
optical system are discussed. In particular, we found that limitations must be placed 
on system noise, aperture, field of view and bandwidth to develop a robust wavefront 
coded system. 
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1.  INTRODUCTION  
 
Imaging systems have followed a rapid shift to digital detection over the past few decades, but 
the optical design process has been slow to follow. Optical system design is still largely 
approached as a set of independent design steps, with the lenses, detection and electronics all 
optimized as separate entities. We examine a systematic approach to optimization for the specific 
case of cubic phase wavefront coding, where the optics are designed in conjunction with object 
spectral bandwidth, actual detector properties and an image processing algorithm to develop a 
final image. In this work, we initially investigate the methods common to wavefront coding 
based on the introduction of a phase plate at the pupil. The desired result of wavefront coding 
optics is an invariantly blurred point spread function (PSF) throughout the field in the image 
plane, which is corrected using digital signal processing. The PSF also remains invariant through 
an extended depth of focus, alleviating the effect of aberrations, such as field curvature and axial 
chromatic, which cause a variation in focal position with field or wavelength, respectively. 
 
Wavefront coding, and computational imaging in general, follows the idea of shifting some of 
the traditional optical burden onto the electronics and computer processing. The benefit to this 
approach is that electronics and processing capabilities are reconfigurable, cheap, weigh very 
little, and take up a smaller space in comparison with optics. The designs of most optical systems 
are driven by one of these limitations, so it is easy to understand the potential benefit offered by 
such a hybrid electro-optical system. Electronic processing, however, does come with its 
disadvantages, some of which will be examined in this work. In particular, noise often becomes a 
problem in a system which employs digital image processing. Understanding the tradeoff 
between system size, complexity, and performance of a system with wavefront coding will assist 
the early lens design process. 
 
Lens designers make tradeoffs early in the design process that determine the layout of the final 
system. In a traditionally designed optical system, where optics and electronics are designed 
separately, the electronic parameters typically have a minimal impact on the first-order optical 
design. At most, designers consider the electronic pixel size to help determine the resolution or 
sampling requirement. Jointly optimized electro-optical systems, on the other hand, require a 
much more detailed knowledge of the system requirements and capabilities even while laying 
out the first-order parameters. Here, we investigated the relationship between optical and 
electronic parameters in a wavefront coded system. We summarized the conclusions into a set of 
design parameters to guide lens designers who wish to include wavefront coding in an optical 
system. We developed guidelines with respect to system aperture ranges which will benefit from 
wavefront coding, initial noise levels that will tolerate image processing, and how these 
parameters may impact the ideal amount of phase to add. These guidelines were verified with 
simulations and validated experimentally. 
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2.  BACKGROUND - WAVEFRONT CODING AND COMPUTATION 
IMAGING 

 
Departing from the traditional design process, beam encoding techniques have been established 
to increase the system depth of field or otherwise improve system performance.[1] A beam 
encoding system is one in which the wavefront is encoded with a designed phase to engineer the 
image point spread function in a known way. Beam encoding methods fall into two categories: 
smooth coding using a continuous phase surface, and discrete coding using a discontinuous 
surface such as a diffuser or binary mask. The encoded phase is designed in conjunction with an 
image processing algorithm, which decodes the information collected by the detector to create 
the final image. We use the term ”wavefront coding” to describe smooth phase contributions 
added in the pupil. ”Beam encoding” is a more general term encompassing all methods of 
altering the phase of an optical system, even in a discontinuous manner, in conjunction with 
image processing. Many beam encoding systems are designed to increase the depth of field of 
the system as an alternative to the mechanically moving parts in a variable focus system. For 
example, the logarithmic asphere provides extended depth of field imaging by adding a phase 
plate that imparts spherical aberration on the beam.[2, 3] Other examples are the annular axicon 
and light sword optical elements, both of which extend depth of focus by spreading light into a 
focal line along the optical axis.[4] Ashok and Neifeld approach discontinuous beam encoding 
from a similar electronic imaging standpoint employing a pseudo-random phase mask in the 
pupil plane to achieve superresolution.[5] 
 
Groups exploring wavefront coding employ aspheric elements or additional phase plates in the 
pupil to engineer the point spread function (PSF), such that the optical transfer function (OTF) 
has particular properties over the image that enable image reconstruction through post 
processing.[6-12] This engineered PSF in wavefront coding has the same shape throughout the 
image field, i.e. the system must be designed to have a much larger isoplanatic region than 
without wavefront coding, and is subsequently accounted for using digital signal processing. 
Beam encoding systems have also been developed for a range of other purposes. Stork and 
Robinson introduced the idea of adding the image processing capabilities to the optical design 
process.[13] Their work is instrumental in mapping out an optimization method that includes an 
end-to-end merit function consisting of both the optical and electronic processing systems. Ng 
and Levoy use a technique closely related to wavefront coding, where a lenslet array maps the 
pupil onto the detector.[14] This method retains directional information from the rays, and 
combined with an image processing algorithm, the system allows for digital refocusing of a 
captured image. A similar method places an amplitude attenuating mask near the image plane to 
recover the four-dimensional light field, like Ng and Levoy, but without requiring a lenslet 
array.[15] Lee et al. demonstrate a system designed using the theory behind wavefront coding to 
engineer the point spread function without any additional phase surfaces.[16] Instead, they use a 
number of aspheric surfaces to achieve the desired PSF. Finally, an interesting corollary to the 
cubic phase plate is the Airy beam, which produces an intensity pattern along the beam nearly 
identical to the cubic phase PSF.[17] 
 
Many of these groups have approached the idea of wavefront coding from a theoretical and ideal 
standpoint. In some cases, extensive theory and simulation results are presented but are not 
validated with an experimental setup.[18] Groups that included experimental data or physical 
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systems made an effort to diminish nominal system noise [10], worked only with monochromatic 
illumination or required specific system parameters, like object distance, to be tightly controlled 
and accurately known.[19] Arnison et al. implemented wavefront coding in a high-aperture 
microscope objective; however, their system required only a small amount of cubic phase and a 
low level of system noise.[20] These groups demonstrated the capabilities of wavefront coding 
and a corresponding image reconstruction algorithm on an optical system under ideal 
circumstances. 
 
Alternately, we approached this problem from an optical design perspective. We explored the 
design space by varying different parameters to judge their impact on the effectiveness of the 
added cubic phase and reconstruction. We took into account aspects of a physical system that are 
often ignored, such as noise and alignment errors, and described the implications this 
information has on the final system. From the results of our analysis, we developed a set of 
design guidelines and map out the design space where wavefront coding is likely to be effective. 
While our work here only considers cubic phase wavefront coding, the design approach is 
applicable to other wavefront coding systems. 
  

3.  SIMULATIONS 
 
In this chapter, we define the optical system and image processing model, including the 
assumptions made and the guidelines used in performing our analysis. We discuss the sampling 
relationships required between the image and pupil planes, including how this pertains to our 
deconvolution metric. We examine the bandwidths and spectral weighting used in our 
simulations. Next the cubic phase plate is described. We also introduce our optical system 
objects, image processing algorithm and a corresponding spatial frequency response technique 
used to calculate the one dimensional MTF. Finally, we discuss the image evaluation metrics 
used to determine reconstructed image quality. 
 
3.1 Assumptions 
 
A few general assumptions were made throughout the work in this work. We assumed all 
illumination, both in theoretical models and experiments, was temporally and spatially 
incoherent. We anticipate that the application of this work is best suited to systems that image 
diffusely scattered incoherent light or thermal based extended sources. The illumination in these 
cases is highly incoherent, and our assumption is appropriate. 
 
We also assumed a Gaussian noise model when noise is included in our simulations. We will 
discuss contributions from noise sources that do not follow a Gaussian curve, such as shot noise, 
which is represented by Poisson statistics. However, in these cases, we assumed that either the 
noise contribution is large enough that the Poisson curve can be approximated by a Gaussian, or 
that the non-Gaussian noise contribution is negligible. 
 
Other specific assumptions were made which pertain to only a portion of the work. These 
assumptions are discussed within the section to which they pertain. 
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3.2 Theory 
 
The goal of wavefront coding in the pupil is to engineer the optical transfer function of a system 
in a deliberate manner, such that it is known and is similar throughout a desired reconstruction 
range. This reconstruction range is manifested as an extended depth of focus when a cubic is 
chosen as the phase function. The cubic phase method is commonly used to increase the range of 
in-focus objects in a scene.[6] However, an extended depth of focus is also helpful in correcting 
defocus related aberrations.[7] The effect of wavelength on focal length, defined as axial 
chromatic aberration, was discussed in detail in Section 1.2. Likewise, Petzval field curvature is 
a variation in focus with respect to field. The in-focus points of a system with non-zero Petzval 
curvature form a curved surface instead of a plane, resulting in field-dependent blur in systems 
with a flat image plane. Astigmatism is yet another focus dependent aberration, where sagittal 
and tangential rays from the pupil come to focus at different positions along the axis. In all of 
these cases, if the wavefront coding and reconstruction algorithm is able to extend the depth of 
focus so that it encompasses the entire range of in-focus points, these aberrations will no longer 
contribute to image blur. For the purpose of this work, we choose to focus on using cubic phase 
for the correction of axial chromatic aberration. 
 
3.3 General Model 
 
Our optical system simulations were based upon a model that incorporated the lens design 
software, Zemax, with Matlab processing capabilities. The overall structure of the model 
remained the same throughout each of the different systems that we developed. The lens 
prescription, comprising a simple imaging lens or lenses and an additional phase element, for 
each system that we modeled was entered into Zemax. In the optical model, we also specified a 
set of system parameters including aperture, wavelength and field of view. Two-dimensional 
point spread functions (PSFs) and one-dimensional modulation transfer functions (MTFs) were 
captured from Zemax for each system both with and without wavefront coding phase optics 
present. This created a set of data for the nominal (traditional) system and a second set of data 
for the phase encoded system. The PSF contained information regarding the aberrations present 
in the system. MTFs are generally better suited as a measure of system performance rather than a 
system diagnostic tool. We will discuss these system performance metrics later. 
 
The next step was to import the PSFs into Matlab and set up our optical system parameters 
within Matlab using the parameters from Zemax. The sampling relationships between the pupil 
and image planes, discussed in detail later in Section 3.4, were calculated according to the image 
pixel size used in creating the PSF. Other system parameters, such as focal length, wavelength 
range, and field of view were copied from the Zemax system data. 
 
An ideal object was next loaded into our simulation. Objects imaged for different purposes 
included a greyscale scene, resolution target, or grid depending on our desired output and 
visualization. The object was convolved with the PSF at discrete wavelengths within the 
broadband range to create a series of blurry images. A continuous illumination spectrum is not 
easily modeled; instead, discrete wavelengths were chosen which were spread approximately 
evenly in frequency throughout a wavelength range and were scaled according to our desired 
spectrum. These wavelengths were averaged, with their respective weights, to simulate a 
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broadband spectrum. Next, a single-wavelength PSF was chosen as the deconvolution kernel, 
and the deconvolution algorithm was applied using this kernel. When a grid was chosen as the 
object, an edge from the reconstructed image can be processed using the Spatial Frequency 
Response Matlab program (sfrmat) to determine the MTF of the final reconstructed image. 
 
3.4 Sampling 
 
Highly important to the simulated optical system model is understanding the sampling 
relationship between the pupil and image planes. To ensure that simulations run efficiently and 
correctly, the number of pixels in both planes must be equivalent. For the purposes of this work, 
we assumed square pixels within square arrays. The number of pixels along one dimension of the 
array (equivalent in both the pupil and image planes) is given by Nx. The size of the pixels was 
generally not consistent between the two planes; however, the relationship of physical array 
width and pixel size must obey the following relationships: 
 

 

 

                 Equation 1 
 

 
Figure 1: Important parameters are labeled on this figure showing the exit pupil plan and 
image plane of an optical system. 
 
Figure 1 illustrates the optical system parameters that establish these sampling relationships. λ 
represents the system design wavelength, z refers to the distance between the pupil plane and 
image plane, while dx and du represent pixels sizes in the pupil and image planes, respectively. 
The width of the square image plane is described by h. S is the parameter that describes the 
physical size of the pupil plane array, not the size of the exit pupil. In fact, S must be at least 
twice the size of the physical exit pupil, described by CA, to ensure no aliasing is introduced to 
the simulated images. 
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Figure 2: Diagram of MATLAB code showing the sampling and pixel size of each 
parameter. Images must be down sampled to reflect the physical pixel size of the 
detector. 
Along with correct sampling relationships, the physical size of the detector pixels must also be 
modeled accurately to ensure realistic results. The physical extent of a pixel determines the 
smallest system resolution. Two point spread functions separated by a distance smaller than the 
pixel width are not resolvable by the detector; they appear as originating from the same point. 
The sampling of the detector, inversely related to the physical size of the pixels, must be greater 
than the Nyquist limit of the optical system in order to prevent aliasing in the image. Nyquist 
sampling occurs when the sample spacing is half the distance of the highest frequency signal 
incident upon the detector.[21]  
 
Figure 2 displays a schematic of the MATLAB code used to simulate our optical system. The 
diagram details the sampling used at each step of the simulation. Beginning with an ideal object 
and imported Zemax PSF, both sampled with 0.688 μm pixels, the two arrays were convolved to 
simulate the highly sampled image. This image was then down sampled by a factor of eight, 
resulting in 5.5 μm pixels, to simulate the image captured by our experimental detector. When 
performing a noisy simulation, noise was added to the image at this point. Next, the Fourier 
transform was taken to move to the spatial frequency domain. The frequency domain image was 
zero-padded to increase the array back to the original size of 1024x1024. This method of zero-
padding involves no interpolation, so information was not artificially altered. From this point, we 
took the highly sampled deconvolution PSF and deconvolved it from the zero-padded Fourier 
transform of our image. The diagram labels the deconvolution process simply as 
”Reconstruction,” but in reality, a few different deconvolution metrics were included and 
analyzed here. Finally, the reconstructed image was created by taking the Fourier transform of 
the reconstructed spatial frequencies. When comparing final reconstructed images with 
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experimental images, we down sampled one last time to make sure both images were sampled 
using the experimental 5.5 μm pixel size. 

 

 
(a) 0.688 μm pixel size          (b) 5.5 μm pixel size 

Figure 3: The same PSF, created using 500 nm illumination from a 
wavefront coded doublet system, is sampled with two different pixel sizes. 
 
The reason we chose not to perform all calculations using arrays sampled at the larger 5.5 μm 
pixels lies in the small features of the PSF, which cannot be adequately sampled with large 
pixels. The PSF in Figure 3a, from a simulated wavefront coded doublet system, is sampled with 
pixels smaller than 1 μm in size resulting in over 150 pixels along its width. This sampling 
provides enough detail to resolve the fine features in the PSF. In comparison, the PSF in Figure 
3b is sampled with pixels eight times larger; the actual pixel size here is on the small end of what 
is commercially available and matches our experimental detector. The entire width of the PSF 
spans about 20 pixels on the experimental detector, while many of the fine features extend across 
only one pixel. Sub-pixel shifts of this PSF would result in significantly varying images. Using a 
simulated deconvolution PSF with higher sampling eliminated this problem. 
 
3.5 Bandwidths 
 
We modeled and compared results from three different bandwidths in our simulation, shown in 
Figure 4. For each bandwidth, we chose a series of discrete wavelengths, which were evaluated 
individually then weighted to produce a single broadband image. Two important applications of 
wavefront coding are ground based and satellite imaging systems of objects illuminated by 
sunlight. For this reason, we chose our spectrum based on the ASTM G173-03 Reference Spectra 
Global Tilt, which includes spectral radiation from the solar disk plus diffuse reflection from the 
sky and ground, to simulate light that would be captured on the earth’s surface. We multiplied 
these values by the quantum efficiency of the Kodak KAI-08050 silicon CCD. This assumption 
is a good approximation of the spectrum seen by a typical silicon detector imaging an object 
illuminated by sunlight on the earth’s surface. 
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Figure 4: We model three different bandwidths in our simulation. Midband widths include 
400-570nm (left), and 500-660nm (middle) to determine if the optimal cubic phase has a 
dependency on the average wavelength of the band. The large bandwidth extends from 
350nm to 1100nm (right). 
 
We were interested in the dependency of optimal cubic phase on both the bandwidth size and 
average wavelength of the broadband region chosen. Consequently, we modeled two mid-width 
wavelength ranges (400-570nm and 500-660nm), and one large bandwidth range (350-1100nm). 
The spectra of these bandwidths are shown in Figure 4. We initially also included an analysis of 
smaller bandwidths of 30nm but concluded that the nominal system already performed near the 
diffraction limit, rendering wavefront coding unnecessary for chromatic correction. 
 
3.6 Phase Surface 
 
We added a cubic phase surface to the pupil of our imaging system to directly modify the 
wavefront and, in turn, the point spread function. The phase surface that we used for our 
noiseless simulations was the cubic phase employed by Cathey and Dowski.[1] In our Zemax 
model, the phase was described by an extended polynomial following the function 
 

   Equation 2 
 
where X and Y are normalized pupil coordinates, and α is a constant that determines the amount 
of phase added in the pupil. Figure 5 shows a map of the surface sag of this ideal cubic phase. 
 
When the added phase was chosen carefully, the discrete-wavelength MTFs of the entire 
wavelength band followed a more similar shape. However, this added phase also caused the 
MTF contrast to decrease. If the MTF contrast fell to zero or dropped below the noise floor, 
these spatial frequencies were no longer recoverable using an inverse filter. Examples of nominal 
and wavefront coded MTFs are displayed in Figure 6. In this figure, a singlet system was focused 
for diffraction-limited performance at 500 nm. The MTFs shown are at 660nm; as expected, the 
predominant aberration in the nominal system MTF, shown on the left, is defocus. Zeros occur in 
the nominal MTF very close to the center point meaning that spatial frequencies beyond this 
value are lost at this wavelength. The wavefront coded MTF, on the right, pushes out the zeros 
much farther away from the center point, allowing more information to pass to the image plane. 
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Figure 5: Surface sag of ideal cubic phase with α = 70μm over a clear aperture of about 
10mm. 
 

 
Figure 6: Shown are two-dimensional MTFs of a singlet lens with 660 nm illumination. 
Left is the nominal system showing a significant amount of defocus and clear rings of 
zero contrast. Right is the same system with added cubic phase in the pupil. The region 
where modulation goes to zero is farther from the center allowing for higher spatial 
frequencies to pass through the system. 
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Similarly, in noisy systems (discussed in the next chapter), any low contrast values of MTF, near 
but not necessarily equal to zero, are indistinguishable during recovery. Optimization of the 
value of added phase becomes a balancing act between making the MTF curves similar 
throughout the wavelength band, while retaining a high enough contrast that the signal does not 
reach zero and become indistinguishable from the noise. Based upon this analysis, the 
optimization of the phase surface becomes a different problem when noise is added to the 
simulation, and is thus discussed in greater detail in the next chapter. 
 
3.7 Image Processing Algorithm 
 
We discuss the development of an image processing algorithm to use with each recorded image 
based upon an understanding of the physical optics characteristics of our system.[22] The 
recorded image of an optical system can be represented as a convolution of an object, f and a 
point spread function, h as follows: 
 

     Equation 3 
 
In Fourier space, the relationship becomes 
 

     Equation 4 
with G, F, and H representing the respective Fourier transforms of g, f, and h. H is also called the 
optical transfer function (OTF). The image, then, is an inverse Fourier transform of G, 
 

    Equation 5 
and exact recovery of the object can be done by a simple deconvolution or in Fourier space by a 
division, 

    Equation 6 
 
However, as discussed earlier, images detected using physical systems contain a noise 
contribution, n, as follows: 
 

    Equation 7 
 
Typically only the statistics of the noise function are known, not the exact function itself, so the 
noise contribution makes exact recovery of the object impossible. The goal, then, becomes 
recovering an image that is as close as possible to the original object while reducing the effect of 
noise on the final image.  
 

20 



The ideal inverse filter involves dividing the Fourier transform of the deconvolution kernel, 
described by the OTF, from the Fourier transform of the wavefront coded image, per equation 
2.8. This straight division creates a few mathematical problems when the system OTF and 
deconvolution OTF do not match exactly. 
 
Because the ideal inverse filter requires dividing by the OTF, any zero values within the OTF 
will cause infinitely high values in the reconstructed image. To mitigate this problem, we 
employed a threshold to the OTF in our simulation. All values below the arbitrary threshold are 
set to non-zero nominal value, while all other values remain the same. In the absence of noise, 
the wavefront coded OTF by design should not have values below this threshold up to a spatial 
frequency cutoff. However, when we introduce noise to our simulation, individual pixel values 
may very well fall below this threshold, and unaltered, would produce undesirable spikes in the 
recovered MTF. 

 
Figure 7: Original (perfect) object is shown on the left, and image on the right is 
reconstructed using an ideal inverse filter. Diagonal banding is evident throughout the 
image. 
 
Images created using a simple inverse OTF deconvolution filter typically have a pronounced 
banding pattern in the reconstructed image. Figure 7 shows an example of this effect in the 
deconvolved image on the right. This banding arises from two side lobes at a positive and 
negative diagonal spatial frequency in the OTF. Smoothing the inverse filter by convolving with 
a carefully sized NxN square kernel is an effective way to reduce this banding effect. Smoothing 
with a kernel too large reduces the effectiveness of the deconvolution, while a kernel too small 
fails to remove the banding effect. In most cases, an 11x11 pixel kernel was adequately sized to 
remove banding while not significantly reducing resolution in the reconstructed image. 
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Figure 8: This image series shows the effect of noise on the OTF and PSF. Leftmost 
images show a noiseless OTF (top) and PSF (bottom) for a broadband system with WFC 
= 70 μm. Rightmost images show the effect a noisy system with a SNR = 10. 
 
With these modifications, the ideal inverse filter can work well in systems without noise; 
however, the inverse filter quickly breaks down in a noisy system and ends up amplifying the 
noise rather than just the signal. This is shown mathematically, 
 

   Equation 8 
 
The noise term, N/H, approaches a singularity where the OTF is zero. For small H non-zero 
values of the OTF, the noise is still amplified. Noise in an optical system degrades the form of 
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the OTF as well as the PSF, shown in Figure 8. For our noisy physical system, we sought a more 
robust deconvolution algorithm. 
 
3.8 Image Analysis 
 
Images can be analyzed in a number of ways, often corresponding to the application and the 
image features that are most relevant to the application. We chose to focus mainly on image 
information content, measured by the modulation transfer function. 
 
The MTF can be calculated from the PSF alone because of the Fourier transform relationship 
between the two quantities. Optical simulations provide PSFs with sufficient sampling to 
construct the MTF. Extracting the PSF experimentally, however, is very challenging because the 
pixel size required to adequately sample the PSF is smaller than what is now readily accessible. 
This problem was discussed previously in Section 3.4, and Figure 3 highlights this problem. One 
potential solution to this sampling problem, magnifying the PSF using additional optics, 
overcomes detector array limitations but complicates the system with alignment and relay 
aberration artifacts. 
 
Instead, we use the same MTF method to extract the one-dimensional MTF for both the 
simulation work presented here as well as experimental validation. To this end we adopt the 
slant-edge spatial frequency response (SFR) from the ISO-12233 standard via the MATLAB 
function sfrmat3.[23, 24] The SFR requires a black-to-white slanted edge object as input, shown 
in Figure 9. The algorithm then fits a best-fit line to the slanted edge, supersamples this fit line, 
and then calculates the one-dimensional line spread function of the fit line. Taking the discrete 
Fourier transform of the line spread function results in the reported SFR.[25] The MTF curves 
displayed in the results sections are the normalized modulation of this Fourier transform. 
 

 
Figure 9: The object used for most of our simulations is a sequence of black and white 
bars, angled at about 5 degrees from vertical. A subset of the image is selected to 
contain a single black to white transition for use with the spatial frequency response 
algorithm. 
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We selected one black-to-white edge from each simulated image as our region of interest for any 
MTF calculations. We found consistent results from a region of interest located in the center of 
the image and located toward the edge of the image, since our field-of-view was smaller than the 
isoplanatic image patch. Some reconstructed images, however, contained edge artifacts that 
extended around the border of the image. These edge artifacts could have been minimized by 
including a grey buffer around the image edge and careful algorithm design. Instead, we simply 
chose to use a region of interest near the center of the image for analysis purposes. The one-
dimensional MTF was then extracted using the SFR algorithm, described previously. The 
resulting MTF curves gave us a few important conclusions about the information content of the 
nominal and reconstructed images. The 1-D MTF mapped the image contrast for each spatial 
frequency and allowed us to determine the nominal spatial frequency cutoff, above which 
information is lost and cannot be recovered. We also deduced the spatial frequency range over 
which contrast was boosted by the deconvolution algorithm and were able to determine if noise 
became a limiting factor. 

 
Figure 10: Left curves are produced by the SFR algorithm, while right curves are direct 
output from Zemax. A comparison shows good agreement greater than 10 lp/mm, but 
disagreement below this frequency. The SFR algorithm interpolates data between 
measurement points based on the number of pixels included in the slanted line selection. 
More pixels included in this selection allow for better sampling of these curves; the 
selection area is limited by the size of the rectangle that can be superimposed on the grid 
image. 
 
We include a comparison of the SFR algorithm results with a series of MTF curves exported 
from the Zemax model of a nominal (zero added phase) singlet. In our comparison, Zemax 
curves were generated for each of a set of discrete wavelengths. Grid images were also simulated 
in Matlab by convolving the PSF of each wavelength with the grid object. The SFR algorithm 
was then applied to the slanted line selection to generate MTF curves. Results are shown in 
Figure 10. 
 

4. SIMULATION RESULTS 
 
In this chapter, we analyze a series of simulations in both the absence of noise and added noise. 
We began to develop our wavefront coding simulation in systems that were assumed to be noise-
free. We initially made this assumption for two reasons. First of all, noiseless systems were 
easier to characterize and validate to ensure the optical system model and image processing 
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algorithm were performing as expected. Secondly, we wished to characterize the impact of 
different forms of noise within a system and initially needed to establish a baseline noiseless 
system with which to compare our results. Traditionally, most optical systems are designed 
without considering noise effects until after a design form is determined. Understanding first 
how the system parameters and final image are affected by the addition of phase to the pupil and 
subsequent reconstruction without noise allowed us to determine the effect of the phase on 
system performance and to what degree including noise in the first-order design would assist in 
the design process. 
 
4.1 Noiseless System Simulation and Results 
  
4.1.1 Background 
 
A theoretical comparison of axial chromatic aberration in both the experimental singlet and 
doublet lenses is shown in Figure 11. To create this plot, the best focus was determined using a 
Zemax simulation, and the departure from best focus at 500 nm is plotted. The dashed black lines 
represent the approximate limits of near diffraction-limited resolution; a defocus amount within 
these limits enables nearly diffraction-limited system performance, while performance degrades 
significantly when defocus is outside these limits. The criteria for determining these approximate 
limits involved an MTF curve that did not fall to zero contrast at a spatial frequency smaller than 
the diffraction-limited cutoff and retained at least half the value of the diffraction-limited 
contrast for all frequencies below cutoff. The wavelength range of nearly diffraction-limited 
performance for a singlet, then, is between 470 and 520 nm, whereas the doublet achieves this 
same performance for a wavelength range from below 350 nm to 570 nm. We can later compare 
the reconstructed performance of a wavefront coded singlet with this figure to determine the 
additional benefit provided by the image processing. 
 

 
Figure 11: Variations in focus versus wavelength are shown for both the experimental 
singlet and doublet systems at F/10 for a 100 mm focal length. The plots show the 
departure from best focus at 500 nm for a range of wavelengths. The region between the 
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dashed lines indicates the focal positions that result in nearly diffraction-limited 
performance. 
 
4.1.2 Optimal Phase vs. Bandwidth 
 
We are interested now in investigating how the illumination bandwidth directly impacts the 
optimal system design when using cubic phase wavefront coding. Analyzing the MTF curves at a 
series of individual wavelengths for a nominal singlet, included in the leftmost plot in Figure 12, 
clearly shows the effect of axial chromatic aberration. Wavelengths near the design wavelength, 
480nm and 500nm in the figure, show nearly diffraction limited performance, while the 
performance for other wavelengths degrades quickly. When cubic phase is introduced to the 
pupil, however, the MTF curves begin to take on a similar shape. As the amount of cubic phase 
in increased, the curves for each wavelength become nearly identical, but the overall contrast is 
depressed. MTF curves for two different phase amounts are also included in Figure 12. 
 
As discussed earlier, the additional cubic phase depresses the unprocessed curve throughout the 
range of spatial frequencies as compared with the nominal system evaluated at the design 
wavelength without the cubic-phase element. However, at wavelengths away from the design 
wavelength, the addition of cubic phase extends the spatial frequency of the first zero-crossing of 
the MTF. After processing, the reconstructed broadband MTF of the cubic phase system is 
clearly improved across a majority of the spatial frequency range. Note, the same image 
reconstruction technique can be applied to a nominal optical system (with no added cubic phase), 
but the zeros in the MTF for defocused wavelengths cause infinite amplification of those spatial 
frequencies, leaving the reconstructed image with a large amount of noise and image artifacts. 
 
We ran a set of simulations in the absence of noise to gain insight into whether there is an 
optimal amount of phase to correct a particular wavelength band in a wavefront coded system 
and to see if this optimal phase amount changes with bandwidth. We used our Matlab model of 
the singlet lens and simulated images under various conditions. Figure 13 displays MTF curves 
for this simulated system using mid-bandwidth illumination (400-570 nm). Each subfigure 
represents the system with a different amount of cubic phase (from a 30 μm sag to a 200 μm 
sag). The red curve represents the nominal system MTF and remains constant in all six plots, as 
does the black curve which represents the diffraction limit. The green curve displays the 
wavefront coded system MTF before reconstruction; this curve becomes more depressed overall 
as the amount of phase increases. The blue curve represents the reconstructed MTF, after 
applying an adapted inverse filter as the deconvolution metric. To determine which system has 
the best performance, we apply two error metrics to these curves, as well as adding some of our 
own insight. 
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Figure 12: MTF curves are shown for a singlet with no added cubic phase (left), cubic 
phase with 0.05 mm sag at the edge of the clear aperture (middle), and cubic phase with 
0.1mm sag (right). As cubic phase in increased, the MTF curves for each wavelength 
become increasingly similar to one another, but also depressed for all spatial 
frequencies..   
 
Figure 14 plots the error metric values with respect to cubic phase value for three different 
illumination bandwidths. In both cases, the error metric values for a cubic phase of 200 μm are 
artificially high. Looking back at Figure 13j, we note that the green curve is no longer smooth 
and slowly varying like it is with lower phase amounts. Sampling of each MTF curve is 
approximately 1.5 lp/mm, which is determined by the size of the image subset used in the SFR 
analysis (displayed previously in Figure 9). Any modulation of an MTF curve at a higher rate 
than this sampling value will be undersampled and aliased on the MTF plot. One consequence of 
this high modulation with the 200 μm cubic phase system is OTF values close to zero, which 
amplify noise. Thus, we conclude that the blue reconstructed curve for the 200 μm cubic phase 
system contains amplified noise values rather than reconstructed object information. For this 
reason, we determined that 200 μm is too large of a phase value and we ignored these data points 
in our system analysis. 
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Figure 13: Singlet with mid-bandwidth illumination is analyzed in a wavefront coded 
system with varying sag phase amounts. The jagged wavefront coded (green) curves in 
(i) and (j) indicate undersampling and cause artificial amplification due to noise in the 
reconstructed (blue) curves. 
 

 
Figure 14: Three different illumination bandwidths modeled to determine optimal phase 
amount in a noiseless system. Discarding 200 μm phase points, optimal phase is 70μm 
for mid-bandwidth illumination and 100μm for wide-bandwidth illumination using both 
error metrics. 
 
The rest of the data suggests a clear optimal phase value for each bandwidth. The RMSE metric, 
used in Figure 14a, shows a minimum error at 70 μm of cubic phase for both mid-bandwidth 
systems (plotted as the black and pink curves) and a minimum error at 100 μm for the wide-
bandwidth system (blue curve). The integrated area metric in Figure 14b arrives at the same 
optimal values, this time displaying a maximum value for the highest performance systems. 
 
4.1.3 Conclusion Noise Free Simulations 
 
We tested the cubic phase dependency on bandwidth for three different wavelength ranges and a 
number of values of cubic phase. We concluded that even in the absence of noise, an optimal 
phase value exists for each optical system. 
 
We also determined that the size of the bandwidth made a measurable impact on the optimal 
amount of phase; a larger bandwidth achieved optimal reconstructed performance with a higher 
amount of phase than smaller bandwidths. 
 
In the next section, we will re-visit the optimal phase simulation with the addition of noise to the 
images. We expect to still find an optimal value of added cubic phase dependent on bandwidth, 
but we anticipate that this optimal value won’t be identical to the noiseless case. 
 
4.2 Noisy Simulations and Results 
 
Having gained an understanding of the performance of wavefront coding in a noiseless system, 
we add noise to our simulation to mirror a likely physical scenario. We compare the results of the 
noisy simulation to the noiseless simulation discussed in the previous section. Any difference in 
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the results from the two simulations is significant because it implies that the noise properties of a 
system alter the ideal system parameters and must be understood prior to the design process. 
 
4.2.1 Temporal Noise Sources 
 
Noise contributions in optical systems come from a variety of sources, each having an effect on 
the total noise level in the image. Temporal noise sources vary with time. We describe them 
using statistics instead of in absolute quantities because of their varying nature. Types of 
temporal noise include shot noise, reset and read noise, and dark current shot noise. 
 
Shot noise is inherent in any signal and describes the variation in the number of photons arriving 
at the detector during a period of time. The probability of measuring a photon value, n, when 𝑛𝑛� 
represents the average number of photons, is described using Poisson statistics as 
 

    Equation 9 
The average value of a Poisson distribution is also equal to the variance, 
 

     Equation 10 
 
and the signal-to-noise ratio then becomes the square root of this mean value, 
 

    Equation 11 
 
For example, a 100 photon signal will have a shot noise level of 10 photons and a SNR of 10. 
For values of n >> 1, the Poisson distribution approximates a Gaussian distribution. 
 
Read noise is a collective term encompassing the additive temporal noise sources associated with 
reading out the signal on the detector. The conversion of an analog signal into a digital number is 
not perfectly repeatable, so a variation in pixel value is added to an image each time the detector 
is read. The electronics of the CCD themselves also add extra electrons providing another source 
of fluctuation in each pixel measurement.[26] These variations in readout include thermal noise, 
also called Johnson noise, and 1/f or flicker noise. In our simulation, and later our experiment, 
we will characterize read noise as a single parameter and will not separate out the different 
sources. 
 
Dark current noise is a measure of the number of electrons collected by a pixel as a result of 
thermal agitation at temperatures above absolute zero . This process causes non-zero pixel values 
to be measured even in the absence of any optical signal. The temporal noise associated with 
dark current has a Poisson distribution and is proportional to the square root of the dark current 
itself. Because dark current noise is strongly correlated with the temperature of the CCD, we can 
limit this contribution by cooling the detector. Our simulations required very short exposure 
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times of less than a second, so dark current noise was a negligible factor; however, astronomical 
images requiring exposures on the order of many minutes are strongly affected by this source of 
noise. It is important to note, however, that prior to an exposure, dark current and background 
signal cause a collection of electrons in the detector. If the detector is left idle for a long period 
of time before an exposure is taken, a significant level of charge could build up creating a large 
noise contribution to the image. To prevent this, the detector must be background wiped; the 
CCD is read quickly and the charge on each pixel dumped before beginning the actual 
exposure.[26] 
 
4.2.2 Spatial Noise Sources 
 
Spatial noise sources cannot be reduced by averaging multiple images, as they remain constant 
over time. These sources are often collectively called fixed pattern noise and vary spatially 
across the detector, instead of temporally. Fixed pattern noise consists of individual hot 
(brighter) and cold (darker) pixels, which remain consistent across multiple exposures with the 
same illumination conditions. Causes of spatial noise include dark signal non-uniformity 
(DSNU) and photo response non-uniformity (PRNU). DSNU describes an individual pixel’s 
departure from the average in the absence of external illumination. The measured departure may 
change with a change in temperature or exposure time, however. PRNU arises from the fact that 
individual pixels of the detector do not all possess an equivalent sensitivity to light. Under 
uniform illumination, this pixel-by-pixel response variation causes output variation in the 
image.[27] 
 
Spatial noise sources can be characterized and often minimized experimentally during the image 
flat fielding process. This process involves capturing a dark or bias reference and a uniformly 
illuminated flat reference and removing the contributions of both from the experimental image. 
The process we used is discussed with respect to the experimental procedure in Chapter 6. 
 
4.2.3 Bias 
 
Bias is not a random noise contribution, but we include it in this discussion because it adds a 
value to each pixel in the image sensor that is not directly caused by photons. An unexposed 
pixel will be represented, after readout and conversion into a digital value, by a value with a 
small distribution around zero. This distribution, caused by the readout and conversion noise, 
creates negative values in the image frame. Bias is a positive offset value assigned to each pixel 
before each exposure designed to eliminate the potential for negative values.[26] When the 
image is flat fielded, a pattern template is removed, thus removing bias from the corrected flat 
image. 
 
4.2.4 Signal to Noise Ratio 
 
The signal to noise ratio of an image taken with a CCD can be expressed in terms of the 
contributions from different noise sources and the desired signal as follows [26]: 
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  Equation 12 
 
Here, N* refers to the total number of photons in the desired signal, npix is the number of pixels 
included in the SNR measurement, NS is the number of photons per pixel from the background, 
ND is the number of electrons per pixel from the dark current and NR is the number of electrons 
per pixel caused by the read noise. We assume in this equation that one photon incident on a 
pixel produces one electron. When we make SNR measurements later, we choose an area of flat 
illumination and use the average pixel and noise value across this region. In this case, npix is 
equal to one in the equation above. 
 
4.2.5 Noise in the Matlab Model 
 
Since we did not deal with photon counting applications or any extremely low light levels, we 
chose to use Gaussian statistics to simulate noise in our model. The probability of recording a 
value, n, assuming a Gaussian distribution is as follows, 
 

   Equation 13 
 
 
Here, 𝑛𝑛� again represents the average value of n, while σ2 is the variance. As described earlier, 
using a Gaussian distribution to approximate shot noise is appropriate when n >> 1. Therefore, 
this approximation is appropriate for SNR values of about 10 and above (n = 100) but becomes 
less accurate as the SNR value decreases toward zero. Noise was added to our Matlab model 
using a zero mean Gaussian distribution with a specified normalized variance. We chose our 
specified noise variance based upon the desired image SNR, 
 

    Equation 14 
 
 
4.2.6 Optimal amount of cubic phase 
 
Phase was added in the pupil of the optical system, depressing the MTF across the entire 
wavelength band, but simultaneously making the MTFs for each wavelength more uniform. As 
shown in the previous section, the MTFs became more uniform across a broader wavelength 
band as the amount of added phase increased, but also became more depressed. This MTF 
uniformity is what allows for performance improvements after applying the deconvolution 
algorithm. However, depressing the MTF curves too much caused the noise effects to be 
amplified, resulting in a worse overall performance. A comparison of noiseless and noisy 

31 



broadband MTF curves is shown in Figure 15. The noise floor in this figure appears to remain at 
around 10% contrast, so signals that drop to this level and below are indistinguishable from 
noise. Thus, the phase surface design is a trade-off between increasing the wavelength band of 
the system while maintaining an MTF level high enough to remain above the noise floor. We ran 
a simulation to determine the ideal amount of phase that will provide the best recovered image. 
 

 
Figure 15: Shown is a comparison of broadband MTF curves with and without noise 
present. 
 
 
4.2.6.1 Simulation Parameters 
 
Images were simulated and reconstructed using the singlet lens and a cubic phase plate with 
varying phase amounts. The recovered image was evaluated using our previously discussed error 
metrics: RMSE and two versions of the MTFIA. Results of each error metric were then plotted to 
determine the optimal phase amount. This simulation was repeated for different SNR values to 
show how the optimal phase amount changes with noise in the nominal system. The simulation 
was also performed using a few different illumination bandwidths. 
 
4.2.6.2 Optimal phase results 
 
Figure 16 shows the results of our simulation using spectral broadband illumination and varying 
SNRs. The minimum RMSE value in Figure 16a designates the optimal amount of phase for 
each curve. We see that the blue curve, representing the system with the highest amount of noise, 
shows a clear optimal value of phase of 70μm sag. The pink and black curves, representing 
systems with lower noise levels, have a higher optimal phase value of 100μm. Figure 16b shows 
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results for the same system, using the MTF integrated area metric, and arrives at the same 
optimal phase values. These results support our hypothesis that there is a trade-off between 
adding enough phase to correct the full wavelength range, while not adding too much phase that 
the MTF curves drop below the noise floor. This simulation also highlights the need to consider 
detected image noise during the optical system design process. 
 

 
Figure 16: Wiener filtered images evaluated from an optical singlet with varying amounts 
of cubic phase added. Illumination was broadband, 3501100 nm. The three curves 
represent different SNR values. (a) RMSE evaluation; minimum value (b) MTFIA 
evaluation; maximum indicates best performing system. value indicates best performing 
system. 
 
We then ran the same analysis using mid-bandwidth spectral illumination (400-570 nm). Results 
of this analysis are shown in Figure 17 and follow a pattern similar to the broadband 
illumination. For the mid-bandwidth system, both the RMSE error metric and MTFIA error 
metric point to an optimal phase value of 50μm for the highest noise case and 70μm for the 
medium and low noise cases. In both illumination cases, the optimal phase amount is smaller for 
the high noise system. Comparing results from Figures 16 and 17, we note that the optimal phase 
amount varies also with illumination bandwidth. As we saw in the previous chapter for noiseless 
systems, more phase is required to correct for a larger wavelength band. 
 

 
Figure 17: Wiener filtered images evaluated from an optical singlet with varying amounts 
of cubic phase added. Illumination was a medium sized bandwidth 400-570 nm. The three 
curves represent different SNR values. (a) RMSE evaluation; minimum value indicates 
best performing system.(b) MTFIA evaluation; maximum value indicates best performing 
system. 
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4.2.7 SNR Cutoff 
 
Wavefront coding spreads out energy from the PSF across a larger area at the image plane 
making these systems more susceptible to noise. Because we attempt to boost the information 
content by first lowering contrast to make it more uniform, the deconvolution algorithms begin 
with a noisier signal than would be seen in a traditional optical system. Careful design of the 
deconvolution algorithm can minimize the increase of noise in the processed image, but cannot 
eliminate this problem completely.[28] Therefore, we ran a simulation to determine the 
minimum SNR that an image could contain before processing where the wavefront coding and 
deconvolution algorithm still resulted in a measurable benefit to the system. 
 
A simulation of noisy wavefront coded images and corresponding reconstruction images was 
performed to determine this minimum signal to noise ratio required in a WFC system before 
image processing. In order to match our experimental results (presented in the following 
chapter), we used our achromatic doublet and the measured cubic phase modeled to our 
experimental phase plate. We introduced zero-mean Gaussian additive noise to the down-
sampled simulated image (which has 5.5 μm pixels). In order to simulate different image noise 
levels, we changed the variance of the Gaussian noise and then measured the resulting signal-to-
noise ratio. Because our images contained large areas of high pixel intensity, we were able to 
directly measure the SNR. We selected a rectangular region within one of these high intensity 
patches. For an accurate SNR measurement, the selected region must contain no modulation 
other than that caused by noise. We then divided the average intensity across these pixels by the 
standard deviation: 
 

  Equation 15 
 
Our simulated images show the amplification of noise caused by the deconvolution filter applied 
to the captured image. For each reported SNR value, we simulated a nominal noisy image, then 
reconstructed it using our deconvolution algorithm. Finally, we extracted the MTF curves for 
spatial frequencies ranging from zero to the diffraction limited cutoff of the nominal system. 
Figure 18 shows the original image with an SNR of 12 and its corresponding reconstructed 
image. The starting SNR in this case is too low, and when noise is amplified by the 
deconvolution algorithm, there is a significant loss of contrast in the final image. 
 

 
Figure 18: Simulation of a nominal image with a SNR of 12. MTF (right) shows noise is 
amplified and occludes signal. 
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Figure 19: Simulation of a nominal image with a SNR of 17. 
 
Figure 19 shows an image and reconstruction with a starting SNR of 17. In these images, it is 
apparent that, while noise amplification is still a dominant effect, there is also a notable contrast 
increase at lower spatial frequencies. An image with an SNR close to this value is at the lower 
boundary of where cubic phase is beneficial to a system. 
 
Figure 20 shows an image with a high starting SNR of 28. Noise is still amplified in the 
reconstructed image by the deconvolution algorithm, but it is much less apparent than in the first 
two cases. The increase in noise here is an acceptable tradeoff for the boost in contrast given to a 
range of spatial frequencies. 
 
 

 
Figure 20: Simulation of a nominal image with a SNR of 28. 
 
4.2.8 Conclusions on noisy systems 
 
The addition of noise to our optical system model effected a change in the simulated optimal 
phase value regardless of illumination bandwidth. In a noiseless system, the designer must only 
take care to avoid zero or near-zero values in the deconvolution filter. However, in a noisy 
system, we conclude that the designer must also avoid letting the deconvolution filter fall below 
the noise floor or noise will be amplified in the final image. Noise, then, lowers the optimal 
phase value, and systems with more noise have a lower optimal phase than systems with less 
noise. This result implies that lens designers must understand the expected noise level of their 
nominal system image prior to designing the optical system. This conclusion runs contrary to the 
typical design process where noise is analyzed as a completely separate entity from the optics.  
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5.  EXPERIMENTS 
 
To validate our model, an experimental setup was designed to compare against our simulation. 
The simulation was also adjusted to mirror the actual experimental parameters. In this chapter, 
we will discuss the experimental procedure and analyze the results in comparison with the 
simulated experiment. 
 
 
5.1. Experimental Test Bed  
 
The final iteration of the experimental setup is shown in Figure 21.  A singlet or doublet lens was 
mounted on a fixed stage, and the object was placed at a distance of 860 mm. The lenses both 
had approximately a 100 mm focal length and are used at an effective (working) F/# between 4 
and 10. To set the F/#, we placed an adjustable aperture near the lens. The aperture diameter was 
varied between 20 mm for an F/4 system and 8 mm for an F/10 system. The doublet lens is used 
in the results presented here. The doublet was aligned using an alignment laser to less than 1/2” 
over a distance of four feet, corresponding to an alignment accuracy of 0.6 degrees. 
 
We used an incoherent white light source with four heads to illuminate our diffuse object. The 
white light source had a color temperature of 3250K. The heads were spaced equally at an axial 
distance of approximately 32cm from the object and illuminated the object at 30 degrees with 
respect to surface normal. Figure 21a shows the positioning of the fiber bundle heads. The goal 
was uniform illumination across the camera’s field of view at the object plane. A variety of 
different filters were placed in the illumination pathway so their optical properties did not impact 
the imaging properties of the system. Bandpass filters (Newport), with a full width, half-max 
(FWHM) of 10 nm, were used to simulate single wavelengths. Broadband illumination was 
achieved by using the unfiltered light source. 
 
Alternately, a pinhole was placed in the same object plane to act as a point source, facilitating the 
acquisition of point spread function images. The pinhole was 25 μm in diameter and was back-
illuminated by a focused fiber bundle. The pinhole and illumination setup was positioned on a 
motorized X-Y translation stage and was moved to various field positions in the object plane. 
The step motor driving the translation stage was measured accurately to 10 nm, but for the 
purposes of this experimental work, steps smaller than 0.1 mm were not necessary. 
 
For capturing images, we used a cooled MicroLine ML1050 CCD camera from Finger Lakes 
Instrumentation (FLI), in Lima, New York. The camera included a Kodak KAI-01050 
monochrome image sensor containing 5.5 μm square pixels and a micro-lens array placed in 
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front of the detector allowing for a unity pixel fill factor. The camera had usable pixel values 
between the bias floor of about 2000 counts to the saturation level of 22,280 counts. The bias 
level was measured by examining the statistics of a bias frame, and the saturation level was 
tested and quoted on the camera’s data sheet provided by FLI. The camera’s dynamic range of 
just over 20,000 counts, then, allowed for capturing 14-bit images. 
 
The camera position was controlled in three dimensions (X, Y, and Z) by a motorized stage. 
Using a stopped down aperture and our system alignment laser, we aligned the camera to 
approximately 3mm over a distance of 1.8m. This corresponded to a rotational alignment 
accuracy of 0.1 degrees in X and Y . The camera was then centered about the optical axis using 
the same alignment laser and positioning the laser spot on the camera’s center pixel. Likewise, 
alignment of the translation stage along the Z-axis was verified by translating the camera and 
ensuring that the laser spot did not shift from the center pixel. We were able to determine the 
camera’s center pixel exactly, so the camera was centered about the axis to within 5.5μm. 
 

 
Figure 21: (a) wide view of experimental setup and (b) zoom in on camera, aperture, cubic 
phase plate, and lens.   
 
The cubic phase plate was machined on a flat N-BK7 substrate by QED Technologies®, in 
Rochester, NY using the magnetorheological finishing process. The phase plate was placed 
approximately 8 mm on the object side of the lens. The aperture was placed on the image side of 
the lens at a distance of approximately 17 mm. 
 
5.1.1. Aligning waveplate using PSFs 
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Proper placement of the waveplate into the optical train can be accomplished by imaging the PSF 
during the alignment procedure.  Proper position needs to be aligned in both x and y 
(perpendicular to the optic axis), as well as properly rotated. The waveplate is properly aligned 
when the x and y streaks of the PSF, shown in some sample PSFs in Figure 22, stay aligned in x 
and y as well as remain equal in length when translating the waveplate through the full focal 
range (-1 mm to +1.4 mm).  
 
A properly aligned PSF is shown in Figure 22.  Note that the length of the legs is equal at each 
through focus position. An approximate alignment technique is as follows. While imaging the 
illuminated pinhole through the system with the aperture fully open, image the PSF in real-time 
on the camera. Insert the waveplate and rotate the waveplate so the x and y tails are aligned with 
x and y of the camera. This will give rotational alignment to about 1°.  Now in an iterative 
fashion, move the focus and ensure that the length of the PSF “legs” stay equal through the 
whole focus. Small rotations and x-y displacements should be used to adjust the lengths. The 
overall size of the PSF can vary as long as it remains symmetrical on the diagonal.  It is 
sometime helpful to slightly close the aperture to limit system aberrations.  Converge on the 
proper position by noting whether the lengths get more or less equal with x-y displacement.  
Incorrect waveplate alignment will yield quickly varying and unequal PSF leg lengths as the 
focus is changed. 
 

 
Figure 22: Through focus PSF of cubic phase plate at (a) -1.0 mm, (b) +0.2 mm, and (c) 

and +1.4 mm.  
We were ultimately able to find a plate alignment position where the PSF remained symmetric 
through-focus. We later discuss a parametric optimization where we correlated the experimental 
results with our Zemax simulation. Here, after a great deal of analysis, we are able to determine 
that the phase plate was likely decentered in our experimental setup by about 0.3mm in X and 
aligned in Y better than 0.1mm. The difficulties we faced in the alignment process illustrate one 
of the challenges of designing and building wavefront coded systems. 
 
5.1.2. Measurement procedure 
 
For each image that was taken, we followed the same procedure so that we could compare 
images against each other.  For a given aperture size, focus, camera temperature, and 
illumination wavelength a series of images were taken.  With the target illuminated, the camera 
exposure is adjusted to get the maximum pixel count to close to 22,000 to avoid saturation and 
non-linear response of the camera.  The image was taken at this exposure, followed by a bright 
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field image (inserting pure white card stock at the image plane) and a dark field image (turning 
illumination off, but leaving exposure alone).  The final image could then be calibrated properly 
using both the dark and bright field exposure. 
 
5.2. Sample images 
 
Samples of the images were taken at various focal distances, wavelengths, and temperatures to 
demonstrate the system.  Figure 23 shows a sample image of both the conventional image 
compared to the wavefront encoded image.  
 

 
Figure 23.  Two images at optimal focus illuminated by 500 nm light in large area (a,b) 
and zoomed (c,d).  Conventional images are in (a) and (c) while wavefront coded images 
are in (b) and (d). 
 
5.3. Metrology of fabricated waveplate 
 
The cubic phase plate fabricated by QED Technologies (Rochester, NY) using magneto-
rheological finishing was used to wavefront code the experiments.  The manufacturers included 
white light interferometry (WLI) characterization of the waveplate shown in Figure 24(a) which 
was complemented by data taken with a coordinate measurement machine (CMM) here at Sandia 
shown in Figure 25. 
 
The fabricated waveplate was manufactured according to the ideal surface  
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which is a cubic with a linear term removed where x and y are given in mm, the normalization 
factor of 12.5 is in mm, and the resulting Z is in microns.  
 
Both the white light interferometry data and the CMM data fit to the ideal surface by minimizing 
the mean square error between the surfaces.  The difference between the fabricated surface and 
the ideal surface for the WLI and the CMM in Figure 24(b) and Figure 25(b) respectively.  
Overlaid on this data is a circle of diameter 6, 8, and 10 mm.  These rings are to illustrate that the 
discrepancies between the manufactured surface and the ideal surface is smallest in the middle 
portions of the waveplate, and increase as one moves toward the edges.  This justifies the use of 
the 8 mm aperture in the experiments to exclude the wavefront errors introduced near the edges 
of the waveplate.   
 

 
Figure 24.  (a) white light interferometry measurements on fabricated waveplate and (b) 
difference between actual measurement and ideal surface form with diameters of 6, 8, 
and 10 mm overlaid. 
 

 
Figure 25.  (a) coordinate measuring machine measurements on fabricated waveplate 
and (b) difference between actual measurement and ideal surface form with diameters of 
6, 8, and 10 mm overlaid. 
 
The measurements of the surfaces were fit to high order polynomials for import into Zemax for 
simulation of the PSFs.  A plot of the difference between the polynomial fit and the CMM data is 
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shown in Figure 26(a).  The fit optimization tried to get less than a 50 nm difference between the 
polynomial fit and the surface at all points.  Figure 26(b) shows how the fit criteria, the 
maximum height difference between measured surface and the polynomial fit, decreases with 
increased polynomial order.  However, this improvement comes at a price of increased number 
of terms.  For a 30th order fit, the polynomial has 496 terms for import.  
 

 
Figure 26.  (a) the difference between the 30th order polynomial fit and CMM data and (b) 
the maximum height difference between the polynomial fit and the real surface compared 
to the number of terms as a function of fit order.  
 
5.4. Noise of system 
 
The temperature of the camera could be varied to introduce controllable amounts of noise into 
the images.  This noise was quantified by imaging the standard resolution target as a function of 
both camera temperature which could vary from -30°C to 25°C and exposure time which varied 
from 1 ms to 300 ms.  This signal to noise (SNR) level is shown as a function of exposure time at 
the extreme camera temperatures in Figure 27. 
 

 
Figure 27.  Signal to noise versus exposure time at the extreme camera temperatures 
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To determine the noise in the Zemax simulation, the total optical path including aperture, lens, 
and the resolution target at the imaging plane was simulated in Zemax geometric image analysis.  
A sample-generated image is shown in Figure 28(a) and the signal to noise of the image as a 
function of number of rays is shown in (b).  Correlating the data in Figure 27 to that in Figure 
28(b) can be used to determine parameters for imaging simulation. 
 

 
Figure 28.  (a) Resolution target simulated by Zemax when illuminated by 105 photons 
and (b) the SNR of the red boxed region in (a) as a function of photons 
 
5.5 Parametric Optimization 
 
Parametric optimization refers to the process of correlating the alignment of the experimental 
system with the model in order to reliably compare the results. A parametric optimization was 
performed to match the alignment of the phase plate in the experimental setup with the Zemax 
model. An experimental system was set up using the 25 μm pinhole to serve as the object. A 
similar setup is used by Somayaji et al. [29] to measure cubic PSF images. 
 
The diffraction-limited resolution of a system is described as 

     Equation 17 
which evaluates to approximately 6 μm assuming 500 nm illumination and a numerical aperture 
of 0.05. Further assuming the system is diffraction-limited, this resolution increases to 
approximately 2 μm when the aperture is opened to f/4. When the camera is placed in the focal 
plane of the pinhole, the system can resolve this pinhole and it cannot be considered a true point 
source. However, we simulated this setup in Zemax using a circular aperture as our object. We 
also note that our system is not diffraction limited once we leave the focal plane or introduce the 
phase plate to the system. In these cases, the approximation of our pinhole as a point source is 
valid. 
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5.5.1 Nominal System 
 
We started with the nominal system to compare results of the simulation and experiment as well 
as to determine the position of best focus without the phase plate present. Axial alignment of the 
camera was matched by comparing a series of through-focus pinhole images at a few field 
points. Experimental images were taken at 200 μm focus steps, so the correlation between 
experiment and simulation will not be any more accurate than this step size. Figure 29 shows a 
through-focus series of on-axis pinhole images using 500 nm illumination. Figure 30 shows a 
similar series with the pinhole now located at the field position (13.9 mm, 13.9 mm). In both 
figures, simulated images were generated as geometrical images in Zemax using the circular 
aperture as the object. Both image series show a strong correlation between simulation and 
experiment. Using these two image series, we were able to establish that the axial position of 
best focus for 500nm illumination is located at 200 μm in the experimental setup. 

 
Figure 29.  Comparing through-focus on-axis pinhole images shows good agreement 
between the simulation (bottom row) and the experiment (top row) for the doublet system 
with no phase plate. (Axial position is labeled for each image with respect to the zero 
position of the camera motor. A value of Z = n200um refers to a value of −200μm). 
Because of the sign convention in Zemax relative to the motor controller, there is a factor 
of −1 between the two values. 
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Figure 30.  Through-focus pinhole images are compared for an image field point of X = 
13.9 mm, Y = 13.9 mm. Experimental images (top row) agree well with simulated images 
(bottom row). 
 
5.5.2 Wavefront coded system 
 
Next, we compared our wavefront coded experimental images with the simulated images. The 
goal here was to determine the positioning and decenter of the phase plate. A similar process as 
the one described for the nominal system was used to correlate the alignment of the cubic phase 
plate in X and Y . However, since the alignment of the phase plate was unknown within a plane, 
instead of along a single axis, the parametric optimization process was more complicated. 
Pinhole image sequences were simulated for a decentration of the phase plate at each point 
within a 3X3 grid, centered about the optical axis and including steps of 0.3mm. This step size 
was used because it provided a visually apparent change in the pinhole image to allow for 
comparison, whereas a smaller step size was harder to distinguish. For each point on the grid, a 
through-focus image sequence was recorded for both an on-axis pinhole, as well as a full-field 
pinhole. These simulated image sequences were compared with the on-axis and full-field 
experimental image sequences. Using a few iterations of this process, simulating and then 
comparing image sequences, we were able to approximate the alignment of the experimental 
phase plate. Validation of this alignment is shown by the pinhole images in Figure 31. On-axis 
pinhole images are shown in Figure 31a, while Figure 31b shows images for a pinhole located at 
field position (X = 13.9mm,Y =13.9mm). 
 
The alignment was visually best for the comparison shown in the picture, where the phase plate 
was decentered in both X and Y by 0.3 mm. 
 
 

 
(a) On-axis pinhole images. 
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(b) Full-field pinhole images 
 
Figure 31. After the parametric optimization and adjustment of the Zemax model to match 
the experiment, a comparison of simulated and experimental pinhole images, displayed 
as the cube root to highlight details, shows agreement in both overall geometrical shape 
and also small geometrical details. 
 
5.6 Wavefront Coding and Aperture 
 
Aperture size is an important first-order optical system parameter that drives the layout of an 
optical system. Understanding the impact of numerical aperture (or inversely, F/#) on the 
effectiveness of cubic phase is critical to the development of a wavefront coded system. 
 
In the experimental setup, we captured images using two different F/#s, varied by changing the 
size of the aperture. At f/10, only an 11mm clear aperture of the phase plate is used, and 
therefore, the sag of the plate within the used aperture is relatively small. The map in Figure 32 
shows the sag of the phase surface with this smaller clear aperture. 
 
At larger apertures, the illuminated portion of the phase plate is larger, and the sag is much 
higher. As we used a cubic function, the sag increases by the cube of the increase in radius size. 
With a larger sag, the phase plate is harder to manufacture and becomes more prone to errors 
(departure from the designed surface) toward the edge of the part. In terms of manufacturability, 
the value of the sag does not necessarily determine the difficulty level of the part; instead, it is 
the maximum slope of the surface that causes a part to be easier or harder to manufacture. Since 
the phase plate is designed to be placed in the pupil, this sag to clear aperture ratio is directly 
determined by the numerical aperture. 
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Figure 32.  Zemax modeled sag of the phase plate surface with a clear aperture of 
approximately 11mm, which corresponds to an f/10 system. 
 
Examining our experimental images, we noticed larger mismatches with simulated images as the 
aperture was increased. We found the fit required a 12th-order polynomial (91 terms) to bring the 
mismatch between the fit and actual surface below a quarter wave. From this fit, we determined 
that our phase plate contained significant departures from the designed surface toward the edge 
of the part. We began to see these large edge errors at around a 20mm clear aperture, highlighted 
in Figure 33. For this reason, we chose to limit our experimental image analysis to those images 
taken at F/10. 

 
Figure 33.  Ideal phase surface (a), physical surface polynomial fit (b) and error between 
the as-built and ideal surfaces (c) show large departures (peak-to-valley errors of over 50 
μm) near the edge of the part for a 20 mm clear aperture. 
 
For the experimental analysis, subsequently discussed, we used the achromatic doublet. We 
chose to capture all our experimental images herein using an F/10 system to minimize the impact 
of any physical departure from the ideal surface. Full-field images were obtained by replacing 
the pinhole with a diffuse object illuminated by a white light source and a fiber bundle split into 
four heads, as described previously. 
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6.  RECONSTRUCTIONS OF EXPERIMENTAL DATA 

 
Reconstruction of experimental images followed a slightly different procedure than with the 
simulated images. Experimental images required flat-fielding in order to reduce noise and 
remove illumination non-uniformity. Furthermore, pixel and array sizes between the recorded 
image and deconvolution PSF were matched. Reconstruction required using a simulated (from 
Zemax) rather than measured point spread function because of the camera’s pixel size. The 5.5 
μm pixels of the camera are too large to capture the PSF required for deconvolution. This sample 
spacing does not adequately resolve the patterned features of the PSF enough to recover the 
object, as discussed earlier in Chapter 3. 
 
A higher resolution PSF could be measured using additional optics to magnify the original PSF 
on the camera, but this setup would add complexity to the experiment in a few ways. First of all, 
the magnification would need to be measured to a high degree of accuracy to be used in the 
reconstruction algorithm. Secondly, the additional optics would introduce a new set of 
aberrations, degrading the desired PSF and adding another level of uncertainty. This process, 
however, would have the advantage of removing the alignment uncertainty between the actual 
system PSF and the Zemax simulated PSF. 
 
Instead, the solution we chose was to use the simulated PSF from Zemax for the as-built system 
and phase plate. The challenges in using the simulated Zemax PSF resided in alignment of the 
phase plate and modeling the experimental system very accurately. Figure 34 shows the 
algorithm layout, modified for experimental images. 

 
Figure 34.  The experimental reconstruction algorithm begins with a captured image 
(green, upper left) and a simulated PSF (blue, middle left), adjusts each for matching 
array and pixel sizes, then uses deconvolution to produce the final reconstructed image 
(orange, bottom left). 
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6.1. Sample Reconstruction  
 
The experimental data was reconstructed using the Matlab mathematical programming language. 
This relies on Matlab’s internal fast Fourier transform (FFT) functions.  Briefly, the experimental 
PSF is Fourier transformed to the optical transfer function (OTF) and appropriately filtered.  This 
OTF is then convolved with the Fourier transformed wavefront coded image and the result is 
transformed back using the inverse Fourier transform into real space to yield the reconstructed 
image.  An example of a complete series including the conventional, wavefront coded and 
reconstructed image is shown in Figure 35.  A complete version of the reconstruction routine is 
given in Appendix A.   
 

 
Figure 35.  A series of images at 500 nm at optimal focus zoomed in on the smallest 
resolution bars for (a) the conventional image, (b) the wavefront coded image, and (c) the 
reconstructed wavefront coded image. 
 
To evaluate the quality of the reconstructed image, the modulation transfer function (MTF) was 
calculated from the line pairs in the resolution target using the standard technique where the 
minimum and maximum contrast values for each line pair is calculated from 
 

𝐶𝐶(𝑓𝑓) =  𝐶𝐶𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶𝑚𝑚𝑚𝑚𝑥𝑥 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

      Equation 1 
 
where Cmax and Cmin are the minimum and maximum contrast across a given line pair.  The MTF 
is calculated by normalizing the individual contrasts by 
 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓) = 𝐶𝐶(𝑓𝑓)/𝐶𝐶(0)    Equation 2 
 
where C(0) is the contrast of low frequency areas of the image (large uniform areas of contrast).  
An example of the automatic extraction routine implemented in individual line pairs 
implemented in Matlab is shown in Figure 36. 
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Figure 36.  Contrast line scans for images in Figure 35 for line pairs of (a) 0.63 lines/mm 
(b) 1.41 lines/mm, and (c) 2.24 lines/mm 
 
 
The MTF curves of the sample conventional, wavefront coded, and reconstructed images in 
Figure 35 are shown in Figure 36.   
 

 
Figure 37.  The MTF curves for the conventional, wavefront coded, and reconstructed 
images in Figure 35. 
 
6.2 Experimental SNR Cutoff 
 
Next, we captured a series of noisy experimental images to determine the impact of noise on the 
reconstructed image and to make sure our experimental results were consistent with the modeled 
analysis. In order to change the noise level, we varied the exposure length. For each image, the 
SNR was then determined by selecting an area of high intensity and performing the following 
calculation: [30] 
 

  Equation 18 
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Because we flat-field each image, we can be confident that the statistics of our high intensity 
selection are representative of the entire image. The first image, shown in Figure 38, was taken 
with a 1 ms exposure, corresponding to a nominal image SNR of 9. The image was reconstructed 
using a Wiener filter with a constant matched to the SNR to minimize noise amplification. In this 
image and subsequent images, our high intensity area is a rectangular selection from the lower 
right-hand corner of the image. Looking carefully at this figure, we see that the wavefront coded 
nominal image, shown on the left, contains information up to about 35 lp/mm, according to the 
blue curve in the MTF plot on the right. Noise in the nominal image destroys information above 
this spatial frequency. Noise amplification in the reconstruction causes almost all of this original 
information content to be lost, evidenced by looking at the green MTF curve. The contrast falls 
close to zero at a spatial frequency less than 10 lp/mm, and contrast above this frequency is 
likely caused only by noise. Furthermore, the SFR algorithm relies on being able to 
computationally locate the edge in the region of interest; in this case, the edge is obscured so 
much by noise, the algorithm fails. Visually, one can make out a minimal level of contrast for the 
lowest spatial frequencies; however, the nominal image is clearly more visually desirable. 
Consequently, an image with an initial SNR that is too low, evidenced by this example, will not 
benefit from wavefront coding; information will be obscured by the noise. The maximum 
intensity pixel of the experimental images was normalized to one prior to reconstruction. The 
reconstructed images were not re-scaled; when noise was amplified, the resulting images 
appeared darker. 

 
Figure 38.  Experimental wavefront coded image before processing (left) and 
reconstruction (middle) taken with a 1 ms exposure, corresponding to a SNR of 9. MTF 
(right) shows noise is amplified and occludes signal. 
 
The next set of images in Figure 39 represents a 3 ms exposure. The signal to noise ratio in the 
wavefront coded image has increased to 13 by extending the exposure time. Looking at the 
reconstruction, it is evident that noise is still amplified in the final image. However, some of the 
spatial frequencies are boosted causing a greater overall information content within a limited 
spatial frequency range. This exposure, and corresponding SNR, represents a case very close to 
the cutoff of where wavefront coding provides a benefit. Depending on the application, the 
increase in noise in the final image may or may not be tolerable. 
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Figure 39.  Experimental wavefront coded image before processing (left) and 
reconstruction (middle) taken with a 3 ms exposure and a SNR of 13. This image is just at 
the SNR cutoff for a wavefront coded system. MTF (right) shows increased contrast in 
lower spatial frequencies, but also significantly increased noise in higher frequencies. 
 
The final set of images, shown in Figure 40, were taken with a much higher exposure (20 ms). 
The SNR is increased to 30. This case represents a system which may benefit significantly from 
wavefront coding, as noise amplification is not a limiting factor. The MTF curves for this case 
demonstrate that the information content of the reconstruction receives a boost up to about 70 
lp/mm with almost no noise amplification below this spatial frequency cutoff. Higher spatial 
frequencies receive only a small amount of noise amplification. 

 
Figure 40.  Experimental wavefront coded image before processing (left) and 
reconstruction (middle) taken with a 20 ms exposure and a SNR of 30. Spatial 
frequencies in MTF plot (right) are boosted, while noise is only minimally increased. 
 
To demonstrate that our imaging algorithm does not depend on the object, we image and 
reconstruct two other objects: a resolution target and a portion of a grey-scale scene. These 
images were each recorded with a broadband exposure time of 20 msec. The SNR of the highest 
intensity portions of these images was 30, the same as our grid targets. Figure 41 displays the 
wavefront coded (left) and reconstructed (right) images of the resolution bar target based upon 
the US Air Force 1951 standard. Blocks of three bars are displayed both horizontally and 
vertically at varying spatial frequencies. The resolution target is generally used to determine the 
spatial frequency cutoff; the largest block of bars that is unresolvable in the image determines 
this value. In Figure 41, we zoom in on the high frequency portion of the resolution target. 
Likewise, Figure 42 shows a portion of a scene with wavefront coding (left) and the 
reconstructed image (right). 
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Figure 41.  The object for these two images is a resolution bar target based upon the 
USAF-1951 standard. Nominal image on the left is a 20 msec exposure from the 
wavefront coded system before reconstruction. The SNR is 30, the same as our previous 
20msec exposure of the grid target. The reconstructed image on the right appears 
crisper, but does have an increased noise level. 
 

 
Figure 42.  A section of a grey-scale scene is used as the object for these figures. 
Looking particularly at the white letters toward the right-hand side of each image, the 
resolution is enhanced in the reconstructed image. 
 
 
6.3. Optimization of Reconstruction Parameters 
 
The automatic extraction of the MTF data from the reconstructed images allows for rapid 
optimization of the extraction parameters.  The reconstruction parameters included threshold and 
gamma used in the filtering of the OTF of the experimentally acquired PSF and a smoothing 
kernel size used in the inverse filter.  Standard settings, which were close to optimized, for the 
parameters where a threshold of 0.001, a gamma of 1, and a smoothing kernel of 11.  
 
Each parameter was investigated independently to determine the effect on the reconstruction 
quality.  The quality of the reconstruction was determined by calculating the change in contrast 
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for selected line pairs, the SNR of the image, and the area under the MTF curve.  Looking 
simultaneously at three different metrics gave a better indication on the quality of the 
reconstruction.  Discussion of both the threshold and smoothing kernel is discussed below. It was 
found that gamma had negligible influence on the reconstruction. 
 
The optimization of the threshold parameter is shown in Figure 43.  As the threshold value is 
varied around the nominal value (0.001) the influence on the line contrast of the individual pairs 
(Figure 43(a)), the SNR of the image (Figure 43(b), and the area under the MTF curve (Figure 
43(c)) can be examined. 
 

 
Figure 43. Variation of the (a) contrast of individual line pairs, (b) SNR, and (c) area under 
the MTF curves as a function of varying threshold.  Horizontal bars indicate the 
conventional image value(s), and vertical line indicates the nominal setting of threshold. 
 
Sample reconstructions are shown using different threshold values in Figure 44. The 
reconstruction in Figure 44(a) show a threshold value on the left edge in Figure 43 while that in 
(c) is from the right edge where the reconstruction becomes insensitive to threshold.  Figure 
44(b) shows a reconstruction from near the peak of the SNR in Figure 43(b).  It is clear that 
while the SNR improves significantly above the conventional image, the contrast of the 
reconstructed image does not. 
 

 
Figure 44.  Sample reconstructions for thresholds at (a) 1x10-5, (b) 0.003, and (c) 0.02 with 
other parameters at default values. 
 
A similar optimization of the smoothing kernel is shown in Figure 45.  Sample reconstructions 
near the low and high values of smoothing kernel are shown in Figure 46. 
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Figure 45. Variation of the (a) contrast of individual line pairs, (b) SNR, and (c) area under 
the MTF curves as a function of varying threshold.  Horizontal bars indicate the 
respective value(s) taken from the conventional image values, and vertical line indicates 
the nominal setting of smoothing kernel. 
 

 
Figure 46.  Sample reconstructions for smoothing kernel of (a) 1 and (b) 20 with other 
parameters at default values. 
 
6.4 Conclusions 
 
In both the noisy simulation and the experimental results, we were able to determine an 
approximate cutoff signal-to-noise ratio where wavefront coding began to show a benefit to an 
optical system. In the simulation, we determined this cutoff to be at an SNR of about 17, while in 
the experimental analysis, we found this SNR to be at around 13. The margin of error of this 
cutoff determination is around 20 % for a few reasons. We analyzed discrete exposure times and 
SNR values, so we only have data for these few values and must infer the system behavior in 
between. The cutoff is not a distinct boundary; instead, it provides more of a rule-of-thumb to 
guide lens designers. Finally, there exist many ways to evaluate images, of which we chose two 
to present. The image evaluation metric along with the statistical nature of noise cause any given 
perturbation of metric and system to arrive at a slight variation of cutoff SNR value. Within this 
margin of error, the results of the simulation and experiment provide a strong match. 
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7.  DESIGN CONSIDERATIONS FOR CUBIC PHASE SYSTEMS 
 
The optical system design process traditionally begins with a set of first-order constraints that 
help determine the system layout. These first-order parameters include bandwidth, aperture and 
field-of-view. In this thesis, we attempted to determine the ways in which these first-order 
parameters impact the performance of a wavefront coded system with cubic phase and how the 
parameters drive the design of such a system. We also showed that while not a traditional first-
order parameter, noise drives the design of a cubic phase encoded system and must be considered 
along with the other preliminary constraints. 
 
The results of this examination of wavefront coding performance in noisy broadband optical 
systems can be summarized into a set of design guidelines. Cubic phase is not ideal for all optical 
systems. Optical designers may want to keep these guidelines in mind when considering whether 
the addition of cubic phase and a reconstruction algorithm will be an effective method for 
increasing performance in their particular system. 
 
7.1 Bandwidth 
 
When considering wavefront coding to correct for axial chromatic aberration in a broadband 
system, the size of the illumination bandwidth directly influences the design of the cubic phase 
plate. We simulated optical systems with varying bandwidths to determine the ideal amount of 
phase in a noiseless and then a noisy system. The bandwidths evaluated included two medium-
range bandwidths, 400−570nm and 500−660nm, and one wide bandwidth, 350−1100nm. We 
found that the larger bandwidth required a larger amount of phase for optimal reconstruction, 
while the best phase amount for the medium-range bandwidths was smaller. Furthermore, this 
result held true regardless of the noise level of the system. The amount of cubic phase determines 
the axial region of focus that can be corrected during reconstruction, assuming spherical 
aberration is negligible. 
 
7.2 Aperture 
 
Because the cubic phase in a wavefront coding system is placed in the pupil, the aperture size 
directly impacts the physical sag required to manufacture the phase plate. Assuming a circular 
clear-aperture requirement placed on the phase plate, the maximum sag value at the edge of the 
part scales as the cube of the aperture size. 
 
Additionally, an increased numerical aperture limits the depth of focus of the nominal system. 
The wavefront error (optical path difference) at the edge of the pupil due to defocus is described 
by 

    
Equation 19 

 
where εz is the depth of focus.[31] We showed that adding more cubic phase, in the form of a 
larger physical sag, brings a longer axial region into the reconstructed depth of focus of the 
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system. Equation 19 implies that when the aperture size is increased, the depth of focus inherent 
to the system decreases, and additional phase is required for reconstruction, assuming all other 
system parameters remain the same. Using our experimental parameters, then, we calculate that 
the depth of focus of the F/10 aperture is 6.25X larger than the depth of focus for the same 
system at F/4. 
 
In summary, increasing the aperture size affects the cubic phase plate in two ways. The sag of 
the part at the edge of its clear aperture increases as the cube of the aperture radius increase. 
Additionally, the designed amount of phase must be increased to compensate for a smaller 
nominal depth of focus. These two factors limit the effectiveness of wavefront coding with a 
cubic phase in a high NA system, such as a microscope objective. Experimentally, we 
successfully implemented reconstruction using a cubic phase in an F/10 system. We were unable, 
however, to demonstrate successful reconstruction of the same system at F/4 due to large 
departures in the phase surface from the designed surface. 
 
Larger aperture systems, then, place additional constraints upon the design of the system for 
successful implementation of wavefront coding. In a larger aperture system, the additional 
wavelength bandwidth (alternately, the additional depth-of-focus) provided by the cubic phase 
and reconstruction becomes smaller. In other words, the amount of phase needs to be increased 
in a larger aperture system to provide the same benefit. Furthermore, the higher phase amount 
places tighter constraints on the system noise and makes the phase plate harder to manufacture. 
The trade-off between these parameters must be analyzed with the understanding that a high 
aperture system, like the microscope objective presented by Arnison et al. [20], may benefit from 
wavefront coding only if the other parameters are tightly controlled. 
 
Aperture related assumptions were based upon a system with an approximately 100mm focal 
length. The first-order approach to scaling a system to a different focal length is to preserve 
constant surface slope of the optical elements. When a system is scaled leaving surface slopes 
constant, aberration contributions also change. Since the cubic phase mask must present the 
overwhelmingly dominant aberration in the system for wavefront coding to be effective, this 
method of scaling is effective in preserving the relationship between system aberrations. For a 
shorter focal length system, the aberration contributions are reduced. A scaled-down phase plate 
with the same surface slope also sees a smaller phase contribution. 
 
Since the inherent aberrations of the scaled system have changed, the ideal contribution of the 
phase plate, in relation to the system aberrations, needs to be further examined. The ideal cubic 
phase contribution and the different geometry of the scaled system place new aperture 
constraints on the WFC system. Investigating the relationship between ideal phase amount and 
aperture constraints in a scaled-up or -down system presents an interesting avenue for future 
research. However, in any system, regardless of focal length, the conclusion stands that a larger 
aperture will place greater restrictions on other system parameters such as FOV and noise level. 
 
7.3 Field of View 
 
The isoplanatic patch is traditionally used to refer to a two-dimensional portion of the image, 
within which image quality is considered invariant. Typically, the isoplanatic patch is larger at 
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small field angles around the optical axis and reduces in area toward the edge of the field due to 
the various field aberrations. Image quality within this region, while not nominally invariant, is 
restored to a consistent level after reconstruction. Since a cubic phase encoded system extends 
the axial depth of focus, we must consider a three-dimensional region, within which, the cubic 
phase encoded PSF is considered invariant. The paraxial focal length increases with wavelength, 
so the required axial depth of focus directly scales with bandwidth size. 
 
Field of view in relation to cubic phase systems was not explicitly studied in this thesis, but a 
correlation can be drawn to the conclusions made with respect to bandwidth. Systems containing 
only axial chromatic aberration and no other aberrations are unaffected by field of view. This 
type of system, however, is unrealistic, as every system will see an increase of other aberrations 
if the field is increased large enough. Aberration contributions in physical systems are not 
generally limited to one aberration; usually many aberrations contribute to image blur in varying 
amounts. Furthermore, many aberrations increase with field, so we must consider their 
contributions when determining the benefit of cubic phase in systems with larger fields. 
 
The pupil departure due to the monochromatic first and third-order wavefront aberrations are 
defined as follows: 
 

       
Here, h is the normalized height at the image plane, ρ is the normalized radial pupil coordinate 
and θ is the pupil angular coordinate. W represents the wavefront aberration coefficient for the 
first-order aberrations tilt (W111) and defocus (W020) and third-order aberrations spherical (W040), 
coma (W131), astigmatism (W222), field curvature (W220) and distortion (W311). 
 
Let’s begin by considering the impact of third-order field curvature on this three-dimensional 
isoplanatic region. Field curvature is a variation in focus with field height. When field curvature 
is present in a system, it essentially shifts the axial depth of focus for a particular field point so 
that it is no longer centered about the paraxial focal plane of the design wavelength (where we 
assume the design wavelength is chosen to be the center of the frequency bandwidth). This shift 
in focus means that bandwidth corrected in a cubic phase system gets shifted (typically toward 
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the red end of the spectrum) as field height increases. For a single, full-field image, the 
correctable bandwidth then is decreased; or conversely, the amount of phase required to correct 
the original bandwidth increases. 
 
Other third-order field aberrations coma, astigmatism, and distortion limit the isoplanatic region, 
but their contributions are not as straightforward. Coma and astigmatism destroy the symmetry 
of the cubic phase encoded PSF by shifting energy in various directions depending on the field 
location. Wavefront coding using cubic phase relies on having a similarly shaped PSF across the 
full field of view, so these aberrations reduce the ability of wavefront coding to reconstruct an 
image. Coma and astigmatism contributions are zero on-axis, so their presence simply limits the 
field angles that can be reconstructed. Monochromatic distortion is a variation in magnification 
with field location. Distortion doesn’t actually blur the image, it merely moves the location of the 
image of a point from its paraxial location. Moderate amounts of monochromatic distortion can 
be easily removed using a computer algorithm. Distortion that varies with wavelength, however, 
is called transverse chromatic aberration and presents a greater challenge to wavefront coded 
systems. A variation in magnification with wavelength means that light a single object location 
focuses to different points based upon the wavelength. A camera with different color-sensitive 
pixels or one employing color filters can remove some of this transverse chromatic aberration 
during post processing. A monochromatic detector, on the other hand, is essentially stuck with 
this chromatic-based distortion. As with the other field-based aberrations, transverse chromatic 
aberration is zero on-axis and increases with field angle, so its presence in a wavefront coded 
system restricts the correctable image field. 
 
7.4  WFC system performance with noise 
 
Some optical systems require a high signal to noise ratio, while others may be able, or required, 
to operate in a much lower SNR regime. This inherent SNR requirement is caused by a few 
factors including available light level, exposure time (which may be limited due to camera or 
object motion), and aperture. Understanding the cutoff in SNR where wavefront coding becomes 
ineffective is critical, since in many systems, SNR is not considered until after a design form is 
chosen and developed. We established guidelines for an acceptable level of noise in a nominal 
image prior to reconstruction. We saw that systems with an initial SNR above 20 perform well 
with cubic phase and reconstruction, while systems with an SNR below 10 see an unacceptable 
image degradation as a result of image processing. SNR levels between 10 and 20 form an 
indeterminate area where certain applications, such as an edge detection system, may be able to 
tolerate the noise increase, while many will not. The cutoff SNR values were presented based 
upon our analysis of the experimental doublet and phase plate. These cutoff SNR values will 
change based upon the MTF curves of the coded image prior to processing; a system with MTF 
curves depressed to a larger extent will see a greater degradation of the processed image due to 
noise and will thus require a higher initial SNR. 
 
Establishing a cutoff SNR places direct requirements on the type of detector used in a wavefront 
coded system. A camera with a dynamic range of 8 bits, with the brightest possible pixel value 
being 256, has a maximum SNR of 16 in the brightest areas of the image due to shot noise. A 9-
bit detector has a maximum SNR of 22, while a 10-bit detector has a maximum SNR of 32. 
Reaching the maximum SNR assumes that the camera is exposed to saturation and other noise 
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sources, such as read noise or dark current noise, are negligible. Darker areas of the image will 
have a much lower SNR, greatly increasing the effect of noise. Based upon the results of our 
experiment, a wavefront coded system would not perform well with an 8-bit camera outside the 
very brightest parts of the image. 
 
The thought of using an 8-bit camera in an optical system may seem outdated, but it is actually a 
plausible problem. Consider the design of a digital camera used for amateur photography. The 
detector for such a camera likely has a much larger dynamic range than 8 bits. However, 
consumers often choose to save a compressed form of their images, instead of the raw data, to 
minimize file size. When a consumer saves their file in JPEG format, the data is usually 
compressed into an 8-bit file; the information from the extra bits is lost (JPEG has a few formats, 
but 8-bit is the most widely supported). In this scenario, a digital camera designed with 
wavefront coding would require larger images due to the inherent increase of noise. This may be 
an undesirable feature for some consumers and may limit the marketability of such a camera. 
Consequently, this information would be valuable to consider early in the design process before 
substantial resources are invested. 
 
7.5 Rules of Thumb for Cubic Phase Systems 
 
The following form a set of rules-of-thumb based upon the analysis and results of this research 
project for an optical system employing cubic phase wavefront coding. 
 
• The desired correction bandwidth directly determines the required amount of cubic phase. 
 
• Systems at F/10 and higher are likely good candidates for wavefront coding with cubic 

phase. Systems below F/5 require higher phase surface slopes and more tightly controlled 
system noise. Due to these restrictions, high aperture systems will likely be significantly 
restricted in the bandwidth that can be corrected.  

 
• The field-of-view is restricted based upon the contributions of field-dependent aberrations. 

Large FOV systems require greater field aberration correction in the nominal system.  
 
• The noise level must be understood prior to system design. At minimum, a 10-bit detector is 

required. Correspondingly, a minimum working SNR of 20 is necessary.  
 
• The alignment difficulty of a cubic phase plate adds complexity to the manufacturing and 

testing of the optical system.  
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8 CONCLUSIONS 
 
The first-order system parameters were largely analyzed independently, but the impact of each 
parameter on a system is not fully separable from the other parameters. The set of system 
parameters can be thought of in terms of an error budget; stressing the system in terms of one 
parameter places limitations on the other parameters when considering design complexity. For 
example, a system requiring a large field-of-view and a different system requiring a large 
aperture each attain a higher level of difficulty to design. However, a third system requiring both 
a large FOV and a large aperture is significantly more difficult to design than either of the first 
two systems. 
 
The motivation of cubic phase systems was to relieve some of the imaging burden from the 
optics and place it, instead, on the electronics. We’ve shown that cubic phase will not be 
effective for all systems. However, there appears to be a set of systems which may benefit from 
this type of wavefront coding. Wavefront coding with cubic phase offers the possibility to 
simplify the optics of these systems; for example, replacing an achromatic doublet with a 
wavefront coded singlet. Systems, such as the triplet and double gauss lens follow a similar trend 
of increased complexity with carefully chosen materials for chromatic reduction. If field 
aberrations can be minimized for these more complex lenses, wavefront coding may again be an 
attractive option for a simplified electro-optical system. 
 

60 



9.  REFERENCES 
 

1. Cathey, W.T. and E.R. Dowski, New paradigm for imaging systems. Applied Optics, 
2002. 41(29): p. 6080-6092. 

2. Chi, W.L. and N. George, Electronic imaging using a logarithmic asphere. Optics 
Letters, 2001. 26(12): p. 875-877. 

3. Chi, W.L. and N. George, Computational imaging with the logarithmic asphere: theory. 
Journal of the Optical Society of America a-Optics Image Science and Vision, 2003. 
20(12): p. 2260-2273. 

4. Mikula, G., et al., Diffractive elements for imaging with extended depth of focus. Optical 
Engineering, 2005. 44(5). 

5. Ashok, A. and M.A. Neifeld, Pseudorandom phase masks for superresolution imaging 
from subpixel shifting. Applied Optics, 2007. 46(12): p. 2256-2268. 

6. Dowski, E.R. and W.T. Cathey, EXTENDED DEPTH OF FIELD THROUGH WAVE-
FRONT CODING. Applied Optics, 1995. 34(11): p. 1859-1866. 

7. Mezouari, S. and A.R. Harvey, Primary aberrations alleviated with phase pupil filters, in 
Novel Optical Systems Design and Optimization V, J.M. Sasian and R.J. Koshel, Editors. 
2002. p. 21-31. 

8. Mezouari, S. and A.R. Harvey, Combined amplitude and phase filters for increased 
tolerance to spherical aberration. Journal of Modern Optics, 2003. 50(14): p. 2213-2220. 

9. Muyo, G. and A.R. Harvey, Decomposition of the optical transfer function: wavefront 
coding imaging systems. Optics Letters, 2005. 30(20): p. 2715-2717. 

10. Somayaji, M. and M.P. Christensen, Frequency analysis of the wavefront-coding odd-
symmetric quadratic phase mask. Applied Optics, 2007. 46(2): p. 216-226. 

11. Zhang, W., et al., Ray aberrations analysis for phase plates illuminated by off-axis 
collimated beams. Optics Express, 2007. 15(6): p. 3031-3046. 

12. Zhang, W., et al., Point spread function characteristics analysis of the wavefront coding 
system. Optics Express, 2007. 15(4): p. 1543-1552. 

13. Stork, D.G. and M.D. Robinson, Theoretical foundations for joint digital-optical analysis 
of electro-optical imaging systems. Applied Optics, 2008. 47(10): p. B64-B75. 

14. Levoy, M., et al., Light field microscopy. Acm Transactions on Graphics, 2006. 25(3): p. 
924-934. 

15. Veeraraghavan, A., et al., Dappled photography: Mask enhanced cameras for 
heterodyned light fields and coded aperture refocusing. Acm Transactions on Graphics, 
2007. 26(3). 

16. Lee, S.-H., N.-C. Park, and Y.-P. Park, Breaking diffraction limit of a small f-number 
compact camera using wavefront coding. Optics Express, 2008. 16(18): p. 13569-13578. 

17. Siviloglou, G., et al., Airy beams: a new class of optical waves. Optics & Photonics 
News, 2008. 19(12): p. 21-21. 

18. Zhang, R., et al., Analyzing wavelength behavior of a cubic phase mask imaging system 
based on modulation transfer function. Optics Communications, 2012. 285(6): p. 1082-
1086. 

19. Heide, F., et al., High-Quality Computational Imaging through Simple Lenses. Acm 
Transactions on Graphics, 2013. 32(5). 

20. Arnison, M., et al., Wavefront coding fluorescence microscopy using high aperture 
lenses, in Optical Imaging and Microscopy: Techniques and Advanced Systems. 2003. 

61 



21. Brady, G., Application of Phase Retrieval to the Measurement of Optical Surfaces and 
Wavefronts, 2008, University of Rochester. 

22. Goodman, J., Introduction to Fourier Optics. Physical and Quantum Electronics Series. 
2005: McGraw-Hill. 

23. Burns, P., sfrmat3: SFR evaluation for digital cameras and scanners. 
24. Iso 12233:2000(e), p.-e.s.-p.c.-r.m. 
25. Reichenbach, S.E., S.K. Park, and R. Narayanswamy, CHARACTERIZING DIGITAL 

IMAGE ACQUISITION DEVICES. Optical Engineering, 1991. 30(2): p. 170-177. 
26. Howell, S., Handbook of CCD Astronomy. 2000: Cambridge University Press. 
27. Hopkinson, G., A guide to the use and calibration of detector array equipment. 2004: 

SPIE Press. 
28. Ekstrom, M.P., Digital Image Processing Techniques (Computational Techniques). 

1984.: Academic Press. 
29. Somayaji, M., V.R. Bhakta, and M.P. Christensen, Experimental evidence of the 

theoretical spatial frequency response of cubic phase mask wavefront coding imaging 
systems. Optics Express, 2012. 20(2): p. 1878-1895. 

30. Scientific Volume Imaging. Signal-to-noise ratio, . 2013; Available from: 
http://www.svi.nl/SignalToNoiseRatio. 

31. Lipson, A., S. Lipson, and H. Lipson, Optical Physics. 2010: Cambridge University 
Press. 

 
 
  

62 

http://www.svi.nl/SignalToNoiseRatio


[Blank page following section.] 

63 



APPENDIX A:  MATLAB CODE FOR EXPERIMENTAL 
RECONSTRUCTION 

 
Here is a sample code for reconstruction of experimentally taken images using the 
experimentally collected PSF. 
 
%% WC_ImageRecon 
% Using experimental images with experimentally measured PSF 
% 
% Rob Boye, 29-November-2012 
% Modified: David Scrymgeour 9-10-13 
% Modified: 9-11 incorporating Rob's new deconvolution routine 
% Modified: 9-17 automate collection of MTF curve from line pairs 
% 
% Using experimental images AND experimental PSF collected ~09-10-2013 
  
%% Basic parameters and inputs 
clear 
close all 
clc 
fig = 0; 
  
time = clock; 
  
% Parameters for deconvolution 
threshold = 0.001; % Threshold for inverse filter operation 
gamma=1.0;     % Parameter of Wiener filter used during removal of singularities (and values 
lower than threshold) 
smooth = 11;    %smoothing kernel of OTF 
PSF_rot = 0;    % If phase plate was rotated, it can be adjusted here - in deg 
     
%cross sections to compare between images 
Bar(1,:) = [349,610,900,900];  %0,1 Bottom middle  
Bar(2,:) = [134,354,161,161];  %0,2 Left row, 1 (top) 
Bar(3,:) = [117,310,391,391];  %0,3 Left row, 2  
Bar(4,:) = [93,269,586,586];   %0,4 Left row, 3  
Bar(5,:) = [72,251,754,754];   %0,5 Left row, 4  
Bar(6,:) = [60,210,900,900];   %0,6 Left row, 5 (bottom)  
Bar(7,:) = [565,697,143,143];  %1,1 Right row, 1 (top)  
Bar(8,:) = [592,709,268,268];  %1,2 Right row, 2   
Bar(9,:) = [610,721,379,379];  %1,3 Right row, 3    
Bar(10,:)= [631,733,478,478];  %1,4 Right row, 4  
Bar(11,:)= [652,745,568,568];  %1,5 Right row, 5 
Bar(12,:)= [667,750,643,643];  %1,6 Right row, 6 (bottom) 
Bar(13,:)= [464,535,611,611];  %2,1 Middle right, (bottom) 
Bar(14,:)= [418,473,439,439];  %2,2 Middle left, 1 (top) 
Bar(15,:)= [411,463,498,498];  %2,3 Middle left, 2  
Bar(16,:)= [407,454,545,545];  %2,4 Middle left, 3  
Bar(17,:)= [401,445,588,588];  %2,5 Middle left, 4  
Bar(18,:)= [398,437,628,628];  %2,6 Middle left, 5 (bottom) 
Bar(19,:)= [527,561,431,431];  %3,1 Middle right, 1 (top) 
Bar(20,:)= [535,563,464,464];  %3,2 Middle right, 2  
Bar(21,:)= [542,566,491,491];  %3,3 Middle right, 3  
Bar(22,:)= [547,568,516,516];  %3,4 Middle right, 4 
Bar(23,:)= [551,571,537,537];  %3,5 Middle right, 5 
Bar(24,:)= [555,572,556,556];  %3,6 Middle right, 6 
Bar(25,:)= [494,503 ,505,505];  %4,1 too blurry! 
Bar(26,:)= [488,498 ,520,520];  %4,2 too blurry! 
Bar(27,:)= [486,496 ,532,532];  %4,3 too blurry! 
Bar(28,:)= [485,494,543,543];  %4,4 too blurry! 
Bar(29,:)= [485,493,553,553];  %4,5 too blurry! 
bn=7; 
  
%from 1951 USAF resolution target - data in (line pairs/mm) 
linepairs = 
[0.25,0.28,0.315,0.353,0.397,0.445,0.5,0.561,0.63,0.707,0.793,0.891,1,1.12,1.26,1.41,1.59,1.78,2,
2.24,2.52,2.83,3.17,3.56, 4,4.49,5.04,5.66,6.35,7.13]; 
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%plotting stuff 
plotpsf = 0;  %1 to plot the uncorrected PSF 
plotproc = 0; %1 to plot the processed PSF 
crossplot = 0;  %1 to plot cross sections across linepairs 
zoom = 0;  %1 to zoom in, otherwise plot entire figure 
corner = [400,376]; 
zoomset = [corner(1),corner(1)+250,corner(2),corner(2)+250];  %x1,x2,y1,y2 
  
%Image sets input here 
qq = 1; 
if qq == 1  %f10, 500nm 
    lambda = '500 nm'; 
    aperture = '8 mm'; 
    focus = 'best focus'; 
    PSF_lambda = '500 nm'; 
    PSF_focus = 'best focus'; 
    conv_pre = '\\snl\Mesa\Users\Boye\Wavefront Coding\David Images\Waveplate Series 09-
09\Conv_500_-30C_22s'; 
    wc_pre = '\\snl\Mesa\Users\Boye\Wavefront Coding\David Images\Waveplate Series 09-09\WC_500_-
30C_25s'; 
    PSF_image = fitsread('\\snl\Mesa\Users\Boye\Wavefront Coding\David Images\PSF Images 09-
05\500_psf_bestfocus.fit','Primary'); %psf image 
         
    conv_dark_image = fitsread([conv_pre,'_dark.fit'],'Primary'); 
    conv_flat_image = fitsread([conv_pre,'_bright.fit'],'Primary');    
    conv_image = fitsread([conv_pre,'.fit'],'Primary');  %conventional 
     
    wc_image = fitsread([wc_pre,'.fit'],'Primary');  %waveplate 
    wc_dark_image = fitsread([wc_pre,'_dark.fit'],'Primary'); 
    wc_flat_image = fitsread([wc_pre,'_bright.fit'],'Primary'); 
    
end 
  
%% Reading in & correcting conventional image 
conv_image = conv_image - conv_dark_image; 
conv_image = conv_image ./ (conv_flat_image/max(max(conv_flat_image))); 
image_max = max(max(conv_image)); 
image_min = min(min(conv_image)); 
conv_image = (255*(conv_image-image_min)/(image_max-image_min));  %makes min 0 max 255 
  
fig = fig + 1; 
figure(fig) 
if zoom == 1 
    imagesc( conv_image(zoomset(1):zoomset(2),zoomset(3):zoomset(4)) ); hold on 
else 
    imagesc(conv_image); hold on 
    plot3([Bar(bn,1),Bar(bn,2)],[Bar(bn,3),Bar(bn,4)],[100,100],'r'); 
end 
colormap(gray(256)) 
axis equal tight 
title(['Conventional image (',lambda,' ',aperture,' ',focus,')']); 
    
% Reading in & correcting wavefront coded image 
wc_image = wc_image - wc_dark_image;  %dark image correction 
wc_image = wc_image ./ (wc_flat_image/max(max(wc_flat_image)));  %bright image correction 
image_max = max(max(wc_image)); 
image_min = min(min(wc_image)); 
wc_image = (255*(wc_image-image_min)/(image_max-image_min)); %makes data min 0 max 255 
  
%take care of slight offsets between two images so they align 
conv_p = [388,271];  %location bottom left of square block 
wc_p = [410,249];    %location bottom left of square block 
offx = conv_p(1) - wc_p(1);  
offy = conv_p(2) - wc_p(2); 
  
%apodize the WC image to deal with tiling of FFT 
[X,Y] = meshgrid(-511:512); 
superG_1d = exp(-((X(1,:)).^2/2/350^2).^12); 
superG_2d = superG_1d'*superG_1d; 
wc_image = wc_image.*superG_2d; 
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%plot wavefront coded image 
fig = fig + 1; 
figure(fig) 
if zoom==1 
    imagesc( wc_image(zoomset(1)+offx:zoomset(2)+offx,zoomset(3)+offy:zoomset(4)+offy) ); hold on 
else 
    imagesc( wc_image ); hold on; 
    plot3([Bar(bn,1)-offx,Bar(bn,2)-offx],[Bar(bn,3)-offy,Bar(bn,4)-offy],[100,100],'g'); 
end 
colormap(gray(256)) 
axis equal tight 
title(['Wavefront coded image (',lambda,' ',aperture,' ',focus,') apodized']); 
  
% Plotting PSF image 
if plotpsf == 1 
    fig = fig + 1; 
    figure(fig) 
    imagesc(PSF_image) 
    colormap(jet(256)) 
    axis equal tight 
    title(['PSF (',PSF_lambda,' ',aperture,' ',PSF_focus,')']); 
end 
  
% Reading in PSF image 
% Expand the PSF to a full 1024x1024 - collected at 200x200 
% Drop zoomed in version into full field of average value pixels 
[x,y] = find(PSF_image == max(max(PSF_image)));  %finds center of PSF 
PSF_background = mean(mean(PSF_image(:))); %background value of PSF 
temp = PSF_background .* ones(1024,1024);  %Makes background mean value of image 
temp(512-x:711-x,512-y:711-y) = PSF_image;  %places PSF in middle of field 
PSF_image = temp; 
PSF_image = (255*(PSF_image-min(PSF_image(:)))/(max(PSF_image(:))-min(PSF_image(:))));    
PSF_image = PSF_image/sum(sum(PSF_image));  %divide by sum of pixels - critical!! 
  
%% Rotating PSF to match phase plate from QED - CCW rotation 
N = 1024; 
theta = PSF_rot*pi/180;  %now in radians 
center_y = 512; 
center_x = 512; 
for index1 = 1:N 
    for index2 = 1:N 
        x_coord = round((index1-center_x)*cos(theta) - (index2-center_y)*sin(theta) + center_x); 
        y_coord = round((index1-center_x)*sin(theta) + (index2-center_y)*cos(theta) + center_y); 
        if (x_coord > N || y_coord > N || x_coord < 1 || y_coord < 1) 
            PSF_rotate(index1,index2) = 0; 
        else 
            PSF_rotate(index1,index2) = PSF_image(x_coord,y_coord); 
        end 
    end 
end 
PSF_image = PSF_rotate; 
  
if plotproc == 1 
    fig = fig + 1; 
    figure(fig) 
    imagesc(PSF_image(412:612,412:612)) 
    colormap(jet(256)) 
    axis equal 
    title(['Processed PSF (',PSF_lambda,' ',aperture,' ',PSF_focus,')']); 
end 
  
%% Reconstructing image 
  
%collect contrast for MTF calculations & noise data 
conv_d = conv_image(116:254,409:532);  %in dark square 
conv_b = conv_image(670:790,409:532);  %in bright square 
conv_c0 = (mean(conv_b(:)) - mean(conv_d(:)) ) / (mean(conv_b(:)) + mean(conv_d(:)) ); 
conv_noise_d = [mean(conv_d(:)), std(conv_d(:)), mean(conv_d(:))/std(conv_d(:))];  %noise in 
conventional dark 
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conv_noise_b = [mean(conv_b(:)), std(conv_b(:)), mean(conv_b(:))/std(conv_b(:))];  %noise in 
conventional bright 
  
wc_d = wc_image(100:224,427:547);  %in dark square 
wc_b = wc_image(650:770,427:547);  %in bright square 
wc_c0 = (mean(wc_b(:)) - mean(wc_d(:)) ) / (mean(wc_b(:)) + mean(wc_d(:)) ); 
wc_noise_d = [mean(wc_d(:)), std(wc_d(:)), mean(wc_d(:))/std(wc_d(:))]; %noise in WC dark 
wc_noise_b = [mean(wc_b(:)), std(wc_b(:)), mean(wc_b(:))/std(wc_b(:))]; %noise in WC bright 
  
%Begin reconstruction - first FFT the PSF 
filt_OTF = fftshift(PSF_image); 
filt_OTF = fft2(filt_OTF); 
filt_OTF = fftshift(filt_OTF); 
  
WC_OTF_nonsing = (filt_OTF).*(abs(filt_OTF)>threshold) + 1/gamma.*(abs(filt_OTF)<=threshold); 
InvFilt = (1./WC_OTF_nonsing); 
  
%smooth inverse filter using smoothing kernel 
filt_smooth = ones(smooth,smooth); 
filt_smooth = filt_smooth/sum(sum(filt_smooth)); 
InvFilt = convn(InvFilt,filt_smooth,'same'); 
  
%fft the wc image 
output_image_fft = fftshift(wc_image(:,:)); 
output_image_fft = fft2(output_image_fft); 
output_image_fft = (fftshift(output_image_fft)); 
  
%reconstruct the wc image 
deblur_fft = output_image_fft.*InvFilt; 
deblur_image = fftshift(deblur_fft); 
deblur_image = ifft2(deblur_image); 
deblur_image = abs(fftshift(deblur_image)); 
  
image_max = max(max(deblur_image)); 
image_min = min(min(deblur_image)); 
deblur_image = (255*(deblur_image-image_min)/(image_max-image_min));  %normalize 
        
%plot up reconstructed image 
fig = fig + 1; 
figure(fig) 
if zoom == 1 
    imagesc( deblur_image(zoomset(1)+offx:zoomset(2)+offx,zoomset(3)+offy:zoomset(4)+offy) ); 
else 
    image(deblur_image); hold on 
    plot3([Bar(bn,1)-offx,Bar(bn,2)-offx],[Bar(bn,3)-offy,Bar(bn,4)-offy],[100,100],'b'); 
end 
axis equal tight 
colormap(gray(256)); 
title(['Reconstructed image (',lambda,' ',aperture,' ',focus,')']); 
  
disp(' ') 
disp('RC Image details'); 
fprintf('min/max [ %.2f , %.2f] mean 
%.2f',min(deblur_image(:)),max(deblur_image(:)),mean(deblur_image(:))); 
disp(' '); 
  
%contrast for MTF calculations============================================= 
%collect contrast for all the images 
conv_d = conv_image(116:254,409:532);  %in dark square 
conv_b = conv_image(670:790,409:532);  %in bright square 
conv_c0 = (mean(conv_b(:)) - mean(conv_d(:)) ) / (mean(conv_b(:)) + mean(conv_d(:)) ); 
  
wc_d = wc_image(100:224,427:547);  %in dark square 
wc_b = wc_image(650:770,427:547);  %in bright square 
wc_c0 = (mean(wc_b(:)) - mean(wc_d(:)) ) / (mean(wc_b(:)) + mean(wc_d(:)) ); 
  
rc_image = deblur_image; 
rc_d = rc_image(100:224,427:547);  %in dark square 
rc_b = rc_image(650:770,427:547);  %in bright square 
rc_c0 = (mean(rc_b(:)) - mean(rc_d(:)) ) / (mean(rc_b(:)) + mean(rc_d(:)) ); 
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disp(' '); 
fprintf('Contrast in Conv image bright/dark [ %.2f , %.2f ], value %.2f \n',mean(conv_d(:)), 
mean(conv_b(:)), conv_c0); 
fprintf('Contrast in WC image bright/dark [ %.2f , %.2f ], value %.2f \n',mean(wc_d(:)), 
mean(wc_b(:)), wc_c0); 
fprintf('Contrast in RC image bright/dark [ %.2f , %.2f ], value %.2f \n',mean(rc_d(:)), 
mean(rc_b(:)), rc_c0); 
disp(' '); 
  
%Extract cross sections to pull out MTF information 
for qq = 1:29 
  
    bn = qq; 
    xv = [1:(Bar(bn,2)-Bar(bn,1))+1]; 
    conv_cross = conv_image(Bar(bn,3),Bar(bn,1):Bar(bn,2)); 
    wc_cross = wc_image(Bar(bn,3)+offx,Bar(bn,1)+offy:Bar(bn,2)+offy); 
    rc_cross = rc_image(Bar(bn,3)+offx,Bar(bn,1)+offy:Bar(bn,2)+offy); 
     
    %find edges of data of interest ================================== 
    %find thresholds to capture the data of interest 
    conv_thresh = min(conv_cross) + 0.15*(max(conv_cross)-min(conv_cross)); 
    wc_thresh =   min(wc_cross) + 0.15*(max(wc_cross)-min(wc_cross)); 
    rc_thresh =   min(rc_cross) + 0.15*(max(rc_cross)-min(rc_cross)); 
  
    %consider only values between first & last dip (ignore the left & right edge) 
    a = find(conv_cross < conv_thresh); 
    conv_edge = [a(1), a(length(a))]; 
    clear a 
    a = find(wc_cross < wc_thresh); 
    wc_edge = [a(1), a(length(a))]; 
    clear a 
    a = find(rc_cross < rc_thresh); 
    rc_edge = [a(1), a(length(a))]; 
    clear a 
     
    %Now calculate an average value for top and bottom ==================== 
    %only care about data within conv_edge 
    xv_conv = xv(conv_edge(1):conv_edge(2)); 
    conv_cross_sub = conv_cross(conv_edge(1):conv_edge(2)); 
    xv_wc = xv(wc_edge(1):wc_edge(2)); 
    wc_cross_sub = wc_cross(wc_edge(1):wc_edge(2)); 
    xv_rc = xv(rc_edge(1):rc_edge(2)); 
    rc_cross_sub = rc_cross(rc_edge(1):rc_edge(2)); 
     
    %Average values above or below these thresholds 
    conv_thresh_lo = min(conv_cross_sub) + 0.1*(max(conv_cross_sub)-min(conv_cross_sub)); 
    conv_thresh_hi = min(conv_cross_sub) + 0.85*(max(conv_cross_sub)-min(conv_cross_sub)); 
     
    wc_thresh_lo = min(wc_cross_sub) + 0.1*(max(wc_cross_sub)-min(wc_cross_sub)); 
    wc_thresh_hi = min(wc_cross_sub) + 0.85*(max(wc_cross_sub)-min(wc_cross_sub)); 
     
    rc_thresh_lo = min(rc_cross_sub) + 0.1*(max(rc_cross_sub)-min(rc_cross_sub)); 
    rc_thresh_hi = min(rc_cross_sub) + 0.6*(max(rc_cross_sub)-min(rc_cross_sub)); 
     
    %find contrast values above and below thresholds 
    a1 = find( conv_cross_sub > conv_thresh_hi) + conv_edge(1) -1;  %indexed to full data 
    a2 = find( conv_cross_sub < conv_thresh_lo) + conv_edge(1) -1; 
    Contrast_conv_hi(qq) = mean(conv_cross(a1)); 
    Contrast_conv_lo(qq) = mean(conv_cross(a2)); 
    Contrast_conv(qq) = (Contrast_conv_hi(qq)-Contrast_conv_lo(qq)) ./ 
(Contrast_conv_hi(qq)+Contrast_conv_lo(qq)); 
    MTF_conv(qq) = Contrast_conv(qq) / conv_c0; 
     
    a3 = find( wc_cross_sub > wc_thresh_hi) + wc_edge(1) -1;  %indexed to full data 
    a4 = find( wc_cross_sub < wc_thresh_lo) + wc_edge(1) -1; 
    Contrast_wc_hi(qq) = mean(wc_cross(a3)); 
    Contrast_wc_lo(qq) = mean(wc_cross(a4)); 
    Contrast_wc(qq) = (Contrast_wc_hi(qq)-Contrast_wc_lo(qq)) ./ 
(Contrast_wc_hi(qq)+Contrast_wc_lo(qq)); 
    MTF_wc(qq) = Contrast_wc(qq) / wc_c0; 
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    a5 = find( rc_cross_sub > rc_thresh_hi) + rc_edge(1) -1;  %indexed to full data 
    a6 = find( rc_cross_sub < rc_thresh_lo) + rc_edge(1) -1; 
    Contrast_rc_hi(qq) = mean(rc_cross(a5)); 
    Contrast_rc_lo(qq) = mean(rc_cross(a6)); 
    Contrast_rc(qq) = (Contrast_rc_hi(qq)-Contrast_rc_lo(qq)) ./ 
(Contrast_rc_hi(qq)+Contrast_rc_lo(qq)); 
    MTF_rc(qq) = Contrast_rc(qq) / rc_c0; 
  
    %Cross sections  
    if crossplot == 1 
    fig = fig + 1; 
    figure(fig) 
    plot(xv, conv_cross, '-or', xv, wc_cross, '-ob', xv, rc_cross, '-og'); hold on; 
    plot(xv_wc, Contrast_wc_hi(qq).*ones(size(xv_wc)),':b',xv_wc, 
Contrast_wc_lo(qq).*ones(size(xv_wc)),':b'); 
    plot(xv_conv, Contrast_conv_hi(qq).*ones(size(xv_conv)),':r',xv_conv, 
Contrast_conv_lo(qq).*ones(size(xv_conv)),':r'); 
    plot(xv_rc, Contrast_rc_hi(qq).*ones(size(xv_rc)),':g',xv_rc, 
Contrast_rc_lo(qq).*ones(size(xv_rc)),':g'); 
    ylabel('Intensity (black = 0)'); 
    axis square 
    Ctext = ['Conv [ ',num2str(Contrast_conv_lo(qq),'%.2f'), ' , 
',num2str(Contrast_conv_hi(qq),'%.2f'),' ] MTF = ',num2str(MTF_conv(qq),'%.2f')]; 
    wctext= ['WC   [ ',num2str(Contrast_wc_lo(qq),'%.2f'), ' , 
',num2str(Contrast_wc_hi(qq),'%.2f'),' ] MTF = ',num2str(MTF_wc(qq),'%.2f')]; 
    rctext= ['Recon[ ',num2str(Contrast_rc_lo(qq),'%.2f'), ' , 
',num2str(Contrast_rc_hi(qq),'%.2f'),' ] MTF = ',num2str(MTF_rc(qq),'%.2f'),' Co ',num2str(rc_c0, 
'%.2f')]; 
    legend(Ctext,wctext,rctext,'location','NW'); 
    legend boxoff 
    axis([0,length(wc_cross),0,300]); 
    title(['Cross section #',num2str(qq)]);  
    end 
     
end 
  
linepairs = linepairs(1:qq); 
  
fig=fig+1; 
figure(fig) 
plot(linepairs, MTF_conv, 'or', linepairs, MTF_wc, 'bo', linepairs, MTF_rc, 'go'); 
ylabel('Contrast'); 
xlabel('Line pair/mm'); 
axis square 
legend('Conventional', 'Wavefront Coded','Reconstructed','location','NE'); 
legend boxoff 
%title(['WC - Cross section #',num2str(qq)]); 
  
%plot up contrast of WC image not the MTF 
fig=fig+1; 
figure(fig) 
plot(linepairs, MTF_conv, 'or', linepairs, MTF_wc, 'bo', linepairs, MTF_rc.*rc_c0, 'go'); 
ylabel('Contrast'); 
xlabel('Line pair/mm'); 
axis square 
legend('Conventional', 'Wavefront Coded','Reconstructed - no /c0','location','NE'); 
legend boxoff 
%title(['WC - Cross section #',num2str(qq)]); 
  
elapsed = etime(clock, time); 
fprintf('Elapsed time for run %.2f sec \n',elapsed); 
  
tile 
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